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Effect of iron deficiency on simultaneous
measures of behavior, brain activity, and
energy expenditure in the performance of a
cognitive task
Michael J. Wenger1,2, Diane M. DellaValle 2,3, Laura E. Murray-Kolb4,
Jere D. Haas 2

1Center for Applied Social Research, The University of Oklahoma, 201 Stephenson Parkway, Suite 4100,
Norman, OK 73019, USA, 2Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA, 3Department of
Nutrition and Dietetics, Marywood University, Scranton, PA, USA, 4Department of Nutritional Sciences, The
Pennsylvania State University, State College, PA, USA

Objectives: Iron deficiency (ID) – the highly prevalent nutritional deficiency – has been shown to have
deleterious effects on measures of cognitive performance and brain activity. Many of these results are
suggestive of the impact of ID on neurotransmitter regulation and myelination. A third critical potential
effect of ID on brain function is at the level of brain energy expenditure; however, to date there has not
been any method for indirectly estimating the impact of ID on energy expenditure in humans in the context
of cognitive work.
Methods:We report here a study comparing ID and iron sufficient (IS) college students in which simultaneous
behavioral, encephelographic (EEG), and metabolic data were collected in a task designed as a cognitive
analog to standard physical exertion tasks.
Results: We show that increases in cognitive demands produced decrements in behavioral measures of
performance, and increases in EEG and metabolic measures of work. Critically, we found that the
magnitudes of those changes were directly related to iron levels.
Discussion: We find support for the idea that brain activity mediates the relationship between cognitive
demands and energy expenditure, with ferritin and hemoglobin moderating those relationships in distinct
ways. Finally, we show that levels of energy expenditure can be indirectly estimated by measures of EEG
spectral power.

Keywords: Iron, Iron deficiency, Cognition, Memory, Attention, Energy expenditure, Energetic efficiency, Electroencephelography

Introduction
There is increasing evidence that iron deficiency (ID)
and iron deficiency anemia (IDA) – among the most
prevalent nutritional deficiencies in the world1 – are
related to deficits in perceptual and cognitive perform-
ance.2–4 Iron is transported across the blood–brain
barrier,5,6 and is distributed in a non-uniform manner
throughout the brain.7 There are four general classes
of mechanisms by which iron can affect brain func-
tion:7–10 myelination (as the oligodendrocytes are sites
of iron storage), neurotransmitter synthesis and regu-
lation (particularly the monoamines), synaptogenesis
and neurogenesis, and energy expenditure. In humans,
there have been a variety of experimental methods

that allow for indirect estimates of the effect of iron
status on myelination11 and neurotransmitters,3 but to
date there have been no methods for obtaining indirect
estimates for the effect of variations in iron on brain
energy expenditure.
We describe here a study in which we observed ID-

related decrements in levels of energy expenditure and
cognitive performance, using a novel approach to esti-
mating brain energy expended based on body energy
expended during the performance of cognitive work.
Our approach combines behavioral, metabolic, and
electroencephelographic (EEG) measures acquired
during the performance of a cognitive task that
increases in difficulty across the experimental session:
a cognitive analog to a treadmill test. The potential
for using EEG as a basis for this type of indirect calori-
metry comes from the fact that brain glucose use is
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directly related to the intensity of neural activation, in
particular the generation and propagation of action
and generator potentials and the release, uptake, and
re-uptake of neurotransmitters.12–16 Activation of
neural tissue produces increases in oxygen consump-
tion and glucose metabolism that are nearly linearly
related to spiking frequency.12,15,17–19 In addition,
there is evidence that increases in task difficulty are
regularly related to changes in EEG spectral
power.20–22 Given that activity at the synapses – the
apical dendrites in particular – and overall spike fre-
quency are among the determinants of the major fea-
tures of EEG,23 along with the ability to measure EEG
at time-scales that are comparable to the durations of
cortical processing, suggests that EEG may be poten-
tially sensitive to task-dependent onset and duration
of neural activity.
We recruited matched samples of ID and iron-

sufficient (control, CN) college-aged women, who
performed a cognitive task designed as an analog
to the physical exertion tasks that are commonly
used to assess energy expenditure.24,25 The cognitive
task was a visual short-term memory task, per-
formed concurrently with a math task. The cognitive
task increased in difficulty as the experimental
session proceeded. Along with standard behavioral
measures of performance, simultaneous measures
of metabolic activity and EEG were also obtained.
We tested the hypotheses that (a) increases in the
difficulty of a mental task would result in measur-
able changes in behavior, EEG, and measures of
energy expenditure; (b) changes in each of these
measures would be related to an individual’s iron
status; and (c) measures of EEG spectral power
could be used to estimate total body energy expendi-
ture and thus infer brain energy expenditure.

Methods
Design
The visual short-term memory task was a version of
the classic memory scanning task of Sternberg.26 The
task was implemented as a 2 (group: ID, CN) ×4
(number of segments: 1, 2, 3, 5) ×4 (set size: 1, 2, 3,
4) ×2 (trial type: positive, negative) factorial, with all
factors except group being manipulated within sub-
jects. The concurrent math task was implemented as
a 2 (group: ID, CN) ×4 (number of operations per
trial: 1, 2, 3, 4) factorial, with number of operations
(determined by the set size on any given trial) manipu-
lated within subjects.

Subjects
A total of 210 subjects recruited from the Cornell
University community were initially screened for eligi-
bility. Exclusion criteria included self-reported current
acute or chronic illness, hemolytic anemia, impaired

hepatic or renal function, or use of prescription medi-
cations (excepting contraceptives). Women were classi-
fied as either iron sufficient (CN) or iron deficient
without anemia (ID). ID was defined as hemoglobin
(Hb) concentrations ≥ 12 g/dl and serum ferritin
(sFt) ≤ 16 μg/l.27 Subjects in the control condition
were matched to those in the ID group on the basis
of age, education, and activity level (as reported on
initial questionnaires). Of the initial 210 subjects, a
total of 20 women were identified for each of the
groups. A variety of equipment problems resulted in
the final number of subjects providing usable data
being 19 in the ID group (A total of four of these sub-
jects, all in the ID group, had Hb levels that were
between 11.9 and 12.0 g/dl. All of the analyses
reported below were repeated with and without the
data for these subjects, and there were no qualitative
differences.) and 20 in the CN group.

Materials
The stimuli for the short-term visual memory task
were based on those of Blaha et al.28 Examples of
the stimuli at each level of complexity (number of seg-
ments), along with the dimensions of the stimuli, are
presented in Fig. 1. The stimuli were created by
having segments of four deviations from a baseline,
with those deviations differing in sign and amplitude
(including 0), under the constraint that no two adja-
cent deviations could have the same sign and ampli-
tude. A total of 250 stimuli were created at each level
of complexity, and for each of those, a second stimu-
lus, identical except for one deviation, was also
created. This second stimulus served as the potential
test stimulus on negative trials. The stimuli for the con-
current math task were the digits 1–9, presented in a
24-point bold sans serif font (Arial). All stimuli were
presented on a 53 cm (diagonal) VGA CRT monitor
positioned 72 cm from the subject, at a resolution
of 1024 × 768 pixels and a refresh rate of 60 Hz.
Response choices and latencies were recorded using
the standard computer keyboard, with a temporal res-
olution of ±1 ms. EEG data were acquired using a 64-
channel system (Brain Products, Munich, Germany).
Impedances were kept at or below 5 kΩ, channels
were referenced to electrode Cz, and digitized at 1K
Hz with a 12-bit analog-to-digital converter.
Metabolic variables were acquired using a computer-
ized metabolic cart (TrueOne 2400; ParvoMedics,
Salt Lake City, UT , USA ), using a mask attached
to the face and a heart rate monitor attached to the
chest. Concentrations of O2 and CO2 in expired air
were analyzed with gas analyzers, which were cali-
brated with gases of known concentration at the start
of each testing session. Respiratory volume was
measured with a respiratory pneumotachograph
(Fitness Instrument Technologies, Farmingdale, NY,
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USA) through a two-way breathing valve (Hans
Rudolph, Kansas City, MO, USA).

Procedure
All data were collected in the Human Metabolic
Research Unit (HMRU) on the campus of Cornell
University. At the time of the initial screening, subjects
were given three questionnaires to complete: (a) a
questionnaire for demographics and basic health
status, (b) a questionnaire assessing menstrual status,
and (c) a physical activity questionnaire. The question-
naires were administered by trained research assistants.
Blood samples were acquired by a trained phleboto-
mist, and the samples were transferred to the labora-
tory of the HMRU for analysis.
Subjects who were selected to participate in the

testing returned to the HMRU within 2 weeks of
their initial screening. All visits were scheduled
during standard business hours. The session (lasting
approximately 90 min) began with the collection of
anthropometric measures, using standard procedures
and equipment:29 (a) height, to the nearest 0.1 cm;
(b) weight, to the nearest 0.1 kg; and (c) mid-upper-
arm circumference, to the nearest 0.1 cm. Following
this, the EEG electrode cap, heart-rate monitor, and
face mask for the metabolic cart were attached. The
room lights were then dimmed, and subjects were
instructed to rest for 2 min with their eyes closed.
Following this, the visual short-term memory task
and along with the concurrent math task were
explained to the subject, who practiced each task sep-
arately and then together before beginning the test
trials. For the visual short-term memory task, subjects
were instructed to remember the set of items. For the
concurrent math task, subjects were instructed to
keep a running sum of the digits. Note that the concur-
rent math task was included in order to tax attention,
with the memory task being of primary interest.

The events on each trial of the concurrent tasks were
as follows. Subjects initiated each trial by pressing a
key (space-bar) on the computer keyboard. A fixation
cross was then presented at the center of the screen; its
duration was set on each trial by generating a value
from an exponential distribution with a mean of 500
ms, censored at 300 and 1000 ms. The screen was
then blanked, and the duration of this period was set
on each trial by generating a second value from an
exponential distribution with a mean of 500 ms, cen-
sored at 300 and 1000 ms. Following this, each of
the to-be-remembered (TBR) stimuli for the current
level of number of segments and set size were pre-
sented at a 1 s rate. At the onset of each TBR stimulus,
a single digit was presented immediately to the left of
that stimulus, with the particular value (1–9) being
determined at random, with the constraint that no
two sequential digits could be identical. Following
the presentation of the last TBR item and digit (deter-
mined on each trial by the set size), there was a 2 s
retention interval, during which the screen was
blank. This was followed by the onset of a test stimu-
lus, which was either identical to one of the presented
TBR items, or its complementary negative item.
Subjects indicated whether the item was old (presented
as a TBR item on that trial) or new (the complimen-
tary negative item) using the z and/keys on the compu-
ter keyboard, with the index finger of the dominant
hand assigned to the ‘old’ response. The test item
was cleared after the subject’s response or after 2 s
had elapsed, in which case the trial was coded as an
error; such errors were extremely rare (< 8 total
across all subjects), and data from these trials were
excluded from the analyses. Finally, a test sum,
either correct or incorrect by either 1 or 2, was pre-
sented, and subjects had to verify the correctness of
the test sum using the same two keys, with the
index finger of the dominant hand assigned to the
‘correct’ judgment. A total of 30 positive and 30

Figure 1 Example stimuli at each level of complexity from the visual memory task. Dimensions are given in degrees of visual
angle at a 72 cm viewing distance.
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negative visual memory trials were run at each level of
number of segments and set size. Trials were blocked
by a number of segments, and subjects were allowed
a very brief break between blocks. The order of presen-
tation of trials within a block was randomized for each
subject. The status of the test sum (correct, incorrect)
on each trial was determined at random. No feedback
was provided for either task to maintain a constant
level of task engagement.

Results
An initial examination of the blood, behavioral, EEG,
and metabolic measures revealed no reliable relation-
ships with menstrual status or any of the anthropo-
metric variables. As such, they were not included as
covariates in any of the analyses.

Iron biomarkers
Table 1 presents the blood measures for the two groups
of subjects. As expected, the ID and CN samples dif-
fered reliably on measures of Hb , sFt, and body
iron (BdFe), with the CN subjects having higher
values than the ID subjects. There were no reliable
group differences for soluble transferrin receptor
(sTfR), or for either of the two measures of inflam-
mation (C-reactive protein and α-1 acid glycoprotein).

Behavioral measures
The behavioral, EEG, and metabolic variables were all
analyzed in two ways. First, reflecting the experimen-
tal design, they were analyzed using a 2 (group: ID,
CN) ×4 (number of segments: 1, 2, 3, 5) ×4 (set size:
1, 2, 3, 4) repeated-measures analysis of variance
(ANOVA). Second, assessing the amount of change
in the dependent variables as a function of iron
levels, slopes as a function of the two task difficulty
variables (number of segments, set size) were estimated
separately for each subject. These slopes were then
regressed onto the iron status variables, alone and in
combination, with the best model (highest proportion
of variance accounted for with the smallest number of
predictors) selected on the basis of comparison first to

a null model (intercept only) and to the other possible
models, with the constraint that the selected model
had to offer a superior fit than the null model and
had to account for at least 10% of the variance.

We restrict our presentation of the behavioral data
to those from the visual short-term memory task.
Performance on the concurrent math task was uni-
formly high (error rates< 10% ), and RTs were signifi-
cantly correlated with iron status; details are available
on request. A summary of the ANOVA results for the
behavioral data is presented in Table 2 and the means
for each group as a function of the two difficulty vari-
ables are presented in Fig. 2. ID subjects, relative to
CN subjects, had lower hit and false alarm rates,
with these differences indicating lower levels of

Table 1 Means (M ), standard errors (SE), and group
comparisons for each of the blood measures

ID CN

Variable M SE M SE t

Hemoglobin (Hb, g/dl) 12.1 0.2 13.3 0.2 4.48‡

Serum ferritin (sFt μg/ml) 10.8 4.2 40.0 11.1 10.62‡

Soluble transferrin
receptor (sTfR ug/ml)

6.2 1.7 5.4 1.7 −1.39

Body iron (BdFe) 0.3 2.5 5.8 1.9 7.58‡

C-reactive protein (CRP
mg/l)

4.9 7.8 1.9 5.4 −1.38

α-1 acid glycoprotein
(AGP mg/dl)

70.0 18.9 70.3 15.5 0.05

‡P < 0.001.

Table 2 ANOVA results for the behavioral variables in the
visual short-term memory task

Variable Effect df F MSE

False alarm
rates

Group (G) 1 4.24∗ 0.22

Number of
segments (N)

3 16.97‡ 0.04

Set size (S) 3 6.71‡ 0.05
G ×N 3 0.93 0.04
G × S 3 1.33 0.05
N × S 9 1.59 0.03

G ×N × S 333 0.76 0.03
Hit rates G 1 8.66† 0.33

N 3 23.68‡ 0.04
S 3 5.02† 0.05

G ×N 3 0.78 0.05
G × S 3 1.00 0.05
N × S 9 2.20∗ 0.03

G ×N × S 333 1.12 0.03
Sensitivity (d ′) G 1 5.22∗ 1.16

N 3 60.01‡ 0.64
S 3 11.78‡ 0.70

G ×N 3 1.73 0.64
G × S 3 1.68 0.70
N × S 9 4.28‡ 0.65

G ×N × S 333 0.91 0.65
Bias (c) G 1 6.88∗ 2.82

N 3 0.59 0.33
S 3 2.81∗ 0.34

G ×N 3 0.67 0.33
G × S 3 0.70 0.34
N × S 9 0.35 0.19

G ×N × S 333 1.40 0.19
RT, positive
trials

G 1 24.83‡ 276162

N 3 63.51‡ 50211
S 3 0.17 45632

G ×N 3 1.57 50211
G × S 3 0.22 45632
N × S 9 1.23 26617

G ×N × S 333 0.75 26617
RT, negative
trials

G 1 68.97‡ 199401

N 3 85.92‡ 59943
S 3 20.77‡ 40773

G ×N 3 2.17+ 59943
G × S 3 0.70 40773
N × S 9 2.17∗ 28660

G ×N × S 333 0.75 28660

df= degrees of freedom, MSE=mean square error; +P < 0.10,
∗P < 0.05, †P < 0.01, ‡P < 0.001.
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sensitivity and a more conservative response bias. (A
hit was defined as correctly identifying a presented
item as having been seen in the set, and a false alarm
was defined as incorrectly identifying a new item as
having been seen in the set. Sensitivity was calculated
as d ′ = Z−1(HR) − Z−1(FR), and response bias was
calculated as c = −1

2
[Z−1(HR) + Z−1(FR)], where

HR= hit rate, FR= false alarm rate, and Z−1 is the

inverse normal transformation of a proportion.30,31)
In addition,IDsubjects were slower than CN subjects
on both positive and negative trials. Both of the diffi-
cultymanipulations produced reliable decrements in
performance,with a number of segments affecting all
of the variables except response bias, and set size
affecting all of the variables except mean RT on posi-
tive trials. The joint effect of the two difficulty

Figure 2 Means (±1 standard error) for the behavioral data for the ID and CN subjects in the visual short-termmemory task: (A)
false alarm rates, (B) hit rates, (C) sensitivity (d′), (D) bias (c), (E) RT for positive trials, (F) RT for negative trials.
Note: Segments refers to the complexity of any one TBR item (Fig. 1), while set size refers to the total number of TBR items on a
trial.
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variables was reliable for hit rates, sensitivity, and RT
on negative trials. None of the other interactions were
reliable for any of the variables, including any two-way
or three-way interactions involving group. Thus,
although the performance of ID subjects was less sen-
sitive, more conservative, and slower, the difficulty
manipulations did not impact ID subjects more so
than for the CN subjects.
The results of the regression analyses on the behav-

ioral variables are presented in Table 3. With respect to
the effect of increasing number of segments, lower
levels of sFt predicted less of an increase in false
alarms, larger decreases in hit rates and sensitivity,
and larger increases in RTs on both positive and nega-
tive trials. With respect to the effect of increasing set
size, lower levels of sFt predicted larger decreases in
hit rates and sensitivity, and greater increases in RTs
on negative trials. This more limited effect of set size
can be seen in the diminishing slopes as a function
of set size as the number of segments increased, with
the set size effect becoming asymptotic at either
three or five segments. Finally, lower levels of sFt pre-
dicted more conservative response bias overall (col-
lapsed across both difficulty variables).

EEG measures
For the EEG data, we focused on change from base-
line in normalized spectral power in the α, θ, and γ
bands, as changes in α- and θ-band power have been
associated with effects of increases in task difficulty
and changes in γ-band power have been associated
with effortful attention.20,21,32,33 Results of the
ANOVA on these data are presented in Table 4 and

the means for these variables are presented in Fig. 3.
ID subjects, relative to the CN subjects, had reliably
larger reductions in α-band power and reliably
smaller increases in θ- and γ-band power. Increasing
task difficulty by way of increasing the number of seg-
ments resulted in reliable reductions in α- and
increases in θ- and γ-band power. In contrast, increas-
ing set size had no reliable effect on changes in any of
the three ranges of spectral power. Finally, the
increases in θ- and γ-band power were significantly
larger for the ID relative to the CN subjects.

The results of the regression analyses on the EEG
variables are presented in Table 3. With respect to
increasing difficulty by increasing the number of seg-
ments, lower levels of sFt predicted smaller increases
in both θ- and γ-band power. There were no models
identified for effects related to increasing set size or
for either number of segments or set size for changes
in α-band power.

Metabolic measures
For the metabolic data, we focused on three variables:
heart rate, respiratory rate, and energy expended.
Energy expended was estimated34 as

EE(Mj/min) = VO2 × [3.90 × (1.10 × RER)] × 4.19

where VO2 is the volume of O2 consumed and RER is
the respiratory exchange ratio. Results of the ANOVA
on these variables are presented in Table 4 and the
means are presented in Fig. 4. Subjects who had ID
expended less energy, while having lower heart rates.
Increasing the number of segments and the set size
each resulted in overall higher values for all three

Table 3 Results of the regression analyses for all of the variables (behavioral, EEG, and metabolic)

Type Variable Effect Predictor Intercept β̂ R2

Behavioral FA rates Number of segments (N) sFt 0.0351 0.0036 0.34
Set size (S) – – – –

Hit rates N sFt −0.2304 0.0036 0.33
S sFt −0.1232 0.0019 0.25

Sensitivity (d ′) N sFt −0.5548 0.0089 0.16
S sFt −0.2974 0.0077 0.34

Bias (c) Collapsed across N and S sFt 0.3916 −0.0126 0.19
RT, positive trials N sFt 91 −0.9129 0.10

S – – – –

RT negative trials N sFt 169 −2.6379 0.25
S sFt 101 −2.3210 0.33

EEG % change in α N – – – –

S – – – –

% change in θ N sFt 1.6022 0.1561 0.27
S – – – –

% change in γ N sFt 2.7547 0.2766 0.59
S – – – –

Metabolic Energy expended N sFt −0.009 0.009 0.43
S sFt 0.102 0.006 0.46

Heart rate N sFt 0.012 0.086 0.26
S – – – –

Respiratory rate N sFt 0.880 0.017 0.25
S – – – –

Note: Dashes indicate that an acceptable model was not identified for that variable and effect.
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metabolic variables. The number of segments, as a dif-
ficulty factor, produced higher heart and respiratory
rates for the CN relative to the ID subjects. Set size,
as a difficulty factor, produced higher respiratory
rates for the CN relative to the ID subjects. None of
the other interactions were reliable for any of the
variables.
Results of the regression analyses for the metabolic

variables are presented in Table 3. Lower levels of sFt
predicted smaller increases in respiratory and heart
rate and energy expended as a function of number of
segments. In addition, lower levels of sFt predicted
smaller increases in energy expended as a function of
set size.

Relating behavior, brain, and metabolism
Having shown that our task difficulty manipulations
produced significant effects on the behavioral, EEG,
and metabolic variables, we then considered the
manner in which all of these variables might be
related. We did this by fitting a set of regression-
based moderated mediation models.35 We formed a
16-level ordinal task difficulty variable by recoding
the combination of number of segments and set size.
As mediating variables, we restricted consideration
to percent change in power in the θ- and γ-bands,
given the lack of consistent results for the α-band.
We considered all three metabolic variables as depen-
dent variables . We considered a set of competing
models, including models in which there was no med-
iating effect of brain activity on the relationship
between cognitive demands and energy, models in
which only the number of segments or set size was
the difficulty variable, and models in which iron
status played no role. To be selected, a model had to
account for more of the variance than any of its com-
petitors, and all of the parameter estimates and indi-
cators of mediation, moderation, and moderated
mediation needed to be reliably different from 0. We
were able to identify a model for energy expended
(see Fig. 5). In this model, brain activity mediates
the relationship between cognitive demands and
energy, sFt moderates the relationship between
cognitive demands and brain activity, and Hb, even
at normal (non-anemic) levels, moderates the relation-
ship between brain activity and energy. Note that
inclusion of Hb as a moderating variable significantly
improved the fit of the model, even though Hb was
never selected as a reliable predictor in the regression
analyses. This is most likely because the moderated
mediation models are considering a more complex
set of relationships than those considered in the
regression analyses.
Finally, we sought to determine the extent to which

the EEG activity in concert with iron status could be
used as an estimator for energy expenditure. We
restricted consideration to energy expended, and fit a
set of competing linear regression models using step-
wise selection. To be selected, a model had to
account for at least 10% of the variance and had to
be superior to a null model (intercept only). Using
these criteria, we were able to identify a model for
energy expenditure:

EE = 3.64+ 0.14BdFe+ 0.04θ + 0.01γ,

where BdFe is body iron and θ and γ are percent
change from baseline for θ- and γ-band power, respect-
ively. This model accounted for 38% of the variance.
Note that BdFe is calculated36 as a ratio of sTfR
and sFt. This is important in that (a) sFt was

Table 4 ANOVA results for the EEG and metabolic variables

Variable Effect df F MSE

EEG variables
% change in α Group (G) 1 8.84† 2215

Number of
segments (N)

3 212.47‡ 100

Set size (S) 3 0.69 54
G ×N 3 2.04 100
G × S 3 0.57 54
N × S 9 0.94 82

G ×N × S 333 0.48 82
% change in θ G 1 16.26‡ 706

N 3 260.35‡ 34
S 3 0.92 16

G ×N 3 20.13‡ 34
G × S 3 0.96 16
N × S 9 1.54 15

G ×N × S 333 0.79 15
% change in γ G 1 5.89∗ 1113

N 3 129.44‡ 108
S 3 1.96 75

G ×N 3 16.49‡ 108
G × S 3 1.76 75
N × S 9 0.93 68

G ×N × S 333 0.81 68
Metabolic variables

Energy
expended

G 1 3.64∗ 7.62

N 3 60.32‡ 0.19
S 3 38.03‡ 0.29

G ×N 3 19.43‡ 0.19
G × S 3 1.85 0.29
N × S 9 1.11 0.15

G ×N × S 333 0.34 0.15
Heart rate G 1 9.53† 1846.93

N 3 14.95‡ 138.56
S 3 18.56‡ 53.00

G ×N 3 10.97‡ 138.56
G × S 3 0.91 53.00
N × S 9 1.56 28.30

G ×N × S 333 0.90 28.30
Respiratory
rate

G 1 1.38 122.30

N 3 28.06‡ 2.78
S 3 27.39‡ 2.10

G ×N 3 16.05‡ 2.78
G × S 3 5.85† 2.10
N × S 9 1.56 1.09

G ×N × S 333 0.49 1.09

df=degrees of freedom, MSE=mean square error; ∗P < 0.05,
†P < 0.01, ‡ = P < 0.001.
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consistently identified as the best predictor of the be-
havioral, metabolic, and EEG data (see Table 3);
and (b) a model for energy expenditure using sFt
and sTfR as predictors accounted for 39% of the var-
iance, with this increase in R2 not being sufficiently
large enough to justify the increase in the number of
model parameters.

Discussion
Using three simultaneous streams of data – behavioral,
electrophysiological, and metabolic – in a task
designed to be a cognitive analog to tests of physical
endurance, we demonstrated reliable effects of
increases in cognitive demands on all three classes of
dependent variables, and were able to do this in a
manner that allowed performance to remain above
chance until the very highest levels of difficulty were
reached.
Critically, we found that ID significantly impaired

the extent to which participants were able to respond
to increases in task difficulty, in terms of behavior,
brain dynamics, and energy expended. This indicates

that the effects of ID on the ability to respond to
increases in mental workload are similar in many
respects to the effects of ID on the ability to respond
to increases in physical workload.24,25,37–39 One poten-
tial difference between our findings and those on ID-
related impairments in physical work is with respect
to heart rate. Our data show reliably lower heart
rates for ID relative to CN participants; however,
both this ordering38,39 and the reverse25,40 have been
observed, although in all cases these orderings were
not reliable.

We found support for the idea that brain activity
mediates the relationship between cognitive demands
and energy expenditure. Of potentially greater interest
is that we found support for the idea that iron status
moderates the relationships between task difficulty
and brain activity, and between brain activity and
energy expenditure. Critically, two different measures
of iron status played these moderating roles, with sFt
moderating the relationship between task difficulty
and brain activity, and Hb moderating the relationship
between brain activity and energy expenditure. We

Figure 3 Means (± 1 standard error) for the EEG data (percent change baseline from baseline in spectral power) for the ID and
CN subjects: (A) α-band, (B) θ-band, (C) γ-band.
Note: Segments refers to the complexity of any one TBR item (Fig. 1), while set size refers to the total number of TBR items on a
trial.
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Figure 4 Means (± 1 standard error) for the metabolic data for the ID and CN subjects: (A) energy expended, (B) respiratory rate,
(C) heart rate.
Note: Segments refers to the complexity of any one TBR item (Fig. 1), while set size refers to the total number of TBR items on a
trial.

Figure 5 Model for the manner in which brain activity mediates the relationship between cognitive demands and energy
expended, with iron moderating the relationships between cognitive demands and brain activity, and between brain activity and
energy expended.
Note: numbers in parentheses indicate the proportion of variance accounted for in the prediction of the associated variable;
numbers next to lines indicate estimated parameter values; numbers next to an ’x’ enclosed in a circle indicate estimated
parameter values for an interaction; ∗ = P < 0.05, ∗∗ = P < 0.01, ∗ ∗ ∗ = P < 0.001; sFt = serum ferritin, Hb=hemoglobin.

Wenger et al. Effect of ID on simultaneous measures

Nutritional Neuroscience 2017 9

D
ow

nl
oa

de
d 

by
 [

M
ar

yw
oo

d 
U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
7:

17
 0

8 
A

ug
us

t 2
01

7 



suggest that the effects due to sFt are indicative of the
status of neurotransmitter regulation, potentially
affecting the quality and efficiency of the neural com-
putations whose overall execution was indexed by
changes in power in the θ- and γ-bands. We suggest
that the effects due to Hb are indicative of the status
of an individual’s energetic reserves by way, e.g. of
capability for O2 transport, and that this is indicative
of the level of energetic resources needed to support
increases in brain activity due to increased cognitive
demands. Note that this is true for a sample of individ-
uals whose Hb levels were in the normal (non-anemic)
range. Although these possibilities require further
investigation, the ability to potentially distinguish
separable roles for these two aspect of iron status is a
critical advance.
We also demonstrated that it is possible to obtain

indirect estimates of brain energy use by simultaneous
EEG and metabolic measures, combined with
measures of an individual’s iron status. This was
accomplished in a situation in which the increases in
cognitive demands produced changes in all of our
metabolic variables. Given that there were no physical
demands on subjects, it is reasonable to assume that
the majority of the effects were due to increased
demands on the brain, even with increases in heart
rate. It is known that, even at rest, the brain is respon-
sible for a much larger proportion of the total
energetic requirements of the body, including the
heart.12,14,15 Consequently, having a way of indirectly
estimating energy expenditure, using low-cost technol-
ogies, allows for increased precision in characterizing
the neural effects of variations in iron status in a
variety of populations. However, it should be noted
that it would be useful to refine the approach used
here to allow for a partialing-out of non-task-related
increases in energy expenditure, such as any that
might be attributable to sympathetic arousal.
There are a natural set of steps to be pursued, given

these results. First, the measures of iron status
obtained here are systemic; although they can be
assumed to be proportional to measures of brain
iron, the magnitude of that proportionality is not
well understood, nor is the temporal relationship
between changes in blood iron and changes in brain
iron.41 This suggests that combining these measures
with estimates of brain iron from structural magnetic
resonance imaging (MRI),42,43 and measures of brain
iron metabolism from MRI spectroscopy44 could be
quite informative. Further, measures of overall O2

consumption are not specific to the brain, suggesting
that a further refinement could be the addition of
measures of cerebral oxygenation, such as might be
possible with simultaneous EEG and functional
near-infrared spectroscopy. Finally, the behavioral
measures of performance used here can be augmented

with more precise measures,45 including those that
directly index changes in performance to accuracy.46

For any of these possible directions, we believe that a
critical methodological detail is that the levels of cog-
nitive demand need to span a range from those that
produce moderate decreases in response accuracy
and increases in response latency to those that reduce
performance to chance. Much of the literature on the
relationships between cognitive demands and meta-
bolic measures of work has been hampered by manip-
ulations that produce rather small changes in
performance.47–49

In closing, we have shown that it is possible to
characterize the relationships among cognitive
demands, neural activity, and energy expended in the
context of variations in iron status. Critically, we
have shown that two distinct aspects of iron status –

as indexed by sFt and Hb – play two distinct roles in
these relationships. Finally, we have shown that it is
possible to use measures on neural activity to assess
variations in brain energy expenditure as a function
of iron levels. This opens the door for questions
regarding the role of iron in brain health and cognition
to be asked with increased precision.
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