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Classical Euclidean geometry cannot accuratelyessmt the natural world; fractal geometry is
the geometry of nature. Fractal geometry can bertbesl as an extension of Euclidean geometry and
can create concrete models of the various phystoattures within nature. In short, fractal geometr
and fractals are characterized by self-similaritgt eecursion, which entails scaling patterns, paste
within patterns, and symmetry across every scaaoi Mandelbrot, the “father” of fractal geometry,
coined the term “fractal,” in the1970s, from thaih&Fractus” (broken), to describe these infinjtel
complex scaling shapes. Yet, the basic ideas bdtaothls were explored as far back as the
seventeenth century; however, the oldest fractebmsidered to be the nineteenth century's Castor s
A variety of mathematical curiosities, “patholodicaonsters,” like the Cantor set, the Julia sed, tue
Peano space-filling curve, upset™@ntury standards and confused mathematicianspefieved this
demonstrated the ability to push mathematics otitt@fealm of the natural world. It was not until
fractal geometry was developed in the 1970s thait whst mathematicians thought to be unnatural
was shown to be truly representative of naturahpheena. In the late 1970s and throughout the 1980s,
fractal geometry captured world-wide interest, eserong non-mathematicians (probably due to the
fact fractals make for pretty pictures), and wg®pular topic- conference sprung up and Mandekorot'
treatise on fractal geometiihe Fractal Geometry of Nature/as well-read even outside of the math
community. Basically any form in nature can be desd mathematically with fractals, and fractals
offer a way to translate the natural world into Ineghatics. This paper will focus on a brief overvieiw

the intricate history of fractal geometry and widhtly touch upon the mathematics behind fractals.
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Sierpinski Triangle (D = 1.5849) and Carpet (D = B928), two early fractals

Man-made geometric structures were the regulgreshand forms that mathematicians had
concerned themselves with for thousands of yeaegular shapes were at odds with classical
mathematics; forms of nature existed outside ofatbdd of mathematics. The nineteenth century saw
huge extensions of the idea of symmetry and comgejevhich drew from Euclidean and newly
discovered non-Euclidean geometry. German matheimat-elix Klein, in 1872, suggested viewing
geometry as “the study of the properties of a spdteh are invariant under a given group of
transformations” and that geometry needed to irehuat only classic shapes but also the yet unnamed
fractals and even movements (for example, Browniation, which is a “natural fractal®)Klein
played with ideas of similar/symmetric objects arashsformations/movements in the plane and found
that studying the features of the object that viefiteunchanged by the transformations was the
important ide&.Klein described symmetry as a balance createdhtijas repetitions’ Iterating the

same motion over and over again a number of times@s a pattern or an object that is symmetrical
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with respect to motion; the individual points oétfigure change position but the pattern or thgpeha

of the object, as a whole, remains unchariged.

Brownian Motion

The so-called “pathological monsters,” named stabse they made no sense to nineteenth
century mathematicians, did not fit in with theidegfons of what a curve should be. They could Ioet
classified as classic lines or shapes, and thegsepted objects that were mathematically infiffites
Cantor set is considered to be the earliest fraittaligh the Apollonian gasket, constructed byngpte
geometric procedure, dates back to the ancientkSr&sscovered in 1883 by George Cantor, his set is
comprised of infinitely many points and a simpl#-semilarity. The “paradoxical qualities” of figes
like the Cantor set disturbed nineteenth centurtheraaticians. Things like this had no place in
geometry of the past two thousand yedpPsesently, any fractal dust formed by “roughlyf-s@hilar
repetition” is considered a Cantor set. The Casg¢dibegins with an interval between 0 and 1 one li

the middle third of each successive segment is vethadhis is repeated again and again, and soon,
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many, many, many smaller line segments are cre@témt as many segments at each stage, with each
segment one third of the length from which it c&neen. The fractal dust is the set of points thdefs
behind and not removed. The Cantor set is, bagith# complete set mapped, by one transformation,
onto a part of itself. A contemporary mathemati@é@antor would suggest that the set has a
dimension of zero but in fact its dimension is a@6309. This set, especially, bothered many tdirn

the century mathematicians. However, it is an dsdangredient for many fractals.

i nn i nn i un i nn
i o i i mnu
The Cantor Set
The Koch curve, another pathological monster,asenthan a line but less than a plane, and it is

a curve without any tangents; it is a continuowplolt was discovered by Helge von Koch in 1904.
Every part is itself a miniature copy of the whalal is full of Cantor point-sets. The Koch snowdlak
is a figure of finite area but is infinitely lonfinite length in finite space). If you drew adi around
the Koch snowflake, the curve would never crosghie Koch curve helped highlight the problem of
defining the length of a coastline. A coastlineifinitely long, just like the Koch curve; you can
always find finer and finer indentations to meas@&enoit Mandelbrot addressed the problem of
measuring a coastline later on in his paper, “Hand.is the Coastline of Britain?,” in which
Mandelbrot suggested that while you could not mesathe actual length, as it is infinite, you could
measure its “roughness,” which required rethinkimgnotion of dimension. He proposed that the
rougher something is, the higher the dimensioagt A coastline has a dimension greater than 1 (and

less than 2), but each coastline has a differawstdt dimension. Fractal dimension will be discdsse
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later within this paper. The monsters, as statéorbgedisturbed the turn of the century mathemarisj

they were disrespectful to all reasonable intuiabout shapes and forms. However, though they
believed many of these were mere curiosities witlpoactical value, now such “pathological curves”

occur everywhere in pure and applied mathematics.

Bttt
P 4n?

The Koch Snowflake

Gaston Julia, in the early twentieth century, ®ddvhat happens when you take an equation,
you put a number into the equation, and then, g&a the number you get and put that back into the
equation, and what happens if you keep on iterdlieggame process. What one ends up with is a set.
However, you cannot compute or know the wholeBdia knew his sets could not be described with
words or any concepts found within Euclidean geoyndulia's work contained no images; his
elaborate sets only existed in his mind. The cdatehhis work were largely ignored for half a aamt
until the advent of the computer made everythingsfme. Julia fractals involve iterative mappings
involving complex numbers and functions, but wiik property that all angles remain the s8ifieese

fractals occur often in mathematics. There aretiypes of Julia fractals- wholly connected or wholly
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disconnected, where the former is made up of itgiseparate points (Cantor). If connected, thedtac

is a succession of lines, like a single closed &uimops with loops with loops, or a dendfitehe Julia
sets, much like the nineteenth century monstersadeed the use of fast computers. Computers make
iteration easy. The extent of the Julia set andstewa would not be known until Mandelbrot startesd h

own work on what would go onto to be named fragedmetry.

An Example of a Julia Set, D = 2

Pythagoras studied the figure in which squares wikaeed on sides of a right triangle and
proved that the sum of the areas of the squarés@sides would equal that of the square on the
hypotenuse; this figure has since grew into thé&yaras tree. In 1957 A.E. Bosman wrote a book on
the geometrical shapes found in nature. He relrethe spiral motif found in figures, like shells.
Spirals have become the building blocks of frackéald can be thought of a the building blocks of the

natural world® Bosman also created the Pythagoras tree in 194i2hvs full of spirals and is a “fine
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example of a mathematical fractdThe lopsided Pythagoras tree is a generalizatiavhich a square
is followed by an arbitrary right triangle; it'scarled shape is determined by a similarity

transformation. The dimension of both trees is 2.
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The Pythagoras Tree and Loop-sided Pythagoras Tree

As early as 1960, Mandelbrot had an inkling alibatexistence of fractals. He had dabbled in
economics and found an odd pattern in cotton prafsr he visited a Harvard professor, who could
not get the prices changes to fit the bell curvaniielbrot, instead, looked for patterns acrossyever
scale and symmetry among both the large and soaés When he plugged the prices into a
computer, he found that though each price was raratad unpredictable, the sequence of changes was
independent of scale, and that the curves for gaibe changes matched those of monthly price
changes- there was an unexpected kind of dPdiestead of separating the tiny changes from the big
ones, Mandelbrot bound them together in patterrssa@very scalt.His next early encounter with
fractals was studying noise error. IBM engineersansncerned with noise in telephone lines. The
transmission noise was random, but came in clysadsthe more closely one looked at the clusters
the more complicated the patterns of errors seeMaddelbrot found that on scales of an hour or a

second the proportion of error-free periods toreridden periods remained constant. He recognized
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this as a Cantor set.

Mandelbrot was lucky in that he had access t@thvnced computing sources at IBM, which
could draw the seemingly complex transformatiomgired by the “pre-fractals.” Mandelbrot
employed many techniques discovered by the eadntieth century mathematicians that had been
largely forgotten by the 19738 Earlier mathematicians, like Julia, could not tedenages, as
Mandelbrot said, “There was a long hiatus of a heddears where drawing did not play any role in
mathematics because hand and pencil and rulerexéeisted.” He believed there was a decades long
absence of intuition in mathematics. In 1979, whiteloring the iteration of complicated processes,
like equations with square roots and sines ancdhessMandelbrot discovered that he could create one
image in the complex plane that could serve asaiazpof Julia set$® Mandelbrot plotted the Julia
sets on graphs, and he was able to create the epsg@lf-similar figures Julia could only imaginey B
1980, he discovered an equation that combineth@llulia sets, f(z) = z*2 + ¢, and when iterated, h

obtained his own set, a road-map of all Julia sekst is now known as the Mandelbrot set.

The Mandelbrot Set, “ a Road-map of the Julia Sets”
There are those who considered the Mandelbrdbd®t the most complex and beautiful object

ever encountered in mathematics. It seems to bee'fnactal than any fractal.” Yet, its dimensiorRis



Smith 9
The set can be “interpreted as an illustrated dopgdia of an infinite number of algorithm¥'He

first thought it was one continent, a cardioid watifjoining circles, but what he thought was bits of
photographic dust turned out, at successive entaggts, to be miniature continents. Only in the late
1980s was it found to that everything in the sebisnected by meandering lines like cobweEbEhe
boundary of the Mandelbrot set is “where a progspends most of its time and makes all of its
compromises;” the boundary is “where points areveki to escape the pull of the sEtEvery point in
the complex plane is either in the Mandelbrot sedutside of it. Cataloging the different images
within it or producing a numerical description bétset's outline would require an infinite amount o
information®’

The eye, again according to Mandelbrot, had beamshed out of science, and fractals brought
it back in. Mandelbrot issued a bold statement abwistate of mathematics and posed a challenged-
mathematicians needed to rethink what mathematigisl do. Initially, mathematicians did not accept
Mandelbrot's work. They continued clinging to olradigms; they were too habituated to working
with smooth curves. He responded with his semimakywlhe Fractal Geometry of Natyran which
he illustrated how fractals could give precise measents for natural shapes and how calculations
could be applied to all sorts of formations andurgtsystems. He proposed a new science and a new
way of looking at world- a deeper way of understagdature with mathematics.

These fractal figures have always been there lyttook the development of fractal geometry
to show them- fractal geometry made the invisibigiple. Fractal geometry was indeed a new
language that was dependent, not on basic shdeedicles and triangles as in Euclidean geometry,
but instead upon algorithms, which could be tramséal into curves, shapes, and structures only with
the aid of a computer. Euclidean shapes are destchl simple algebraic formulas, but fractals mty
recursive algorithms to produce them. A fractalveutimplies an organizing structure that lies hidde
among the hideous complication of shap&dtération is key to creating fractals. When yarate an

equation instead of solving it, it becomes a predestead of a description; it is now dynamic iadte
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of static’® The simplest symmetrical figure of this naturénist of a shape which repeats itself
infinitely, moving in the same fixed distance andtie same fixed directici. There are an infinite
number of scales within a mathematical fractal. vall fractal means self-similarity, which leads t
symmetry across scale and patterns inside of pattéccording to Mandelbrot, the notion that
different parts of a figure is self-similar only@ies between certain limits. When each piece of a
shape is geometrically similar to the whole, bt $shape and the “cascade,” the generating
mechanism, are self-simildrTo obtain a Koch curve, a “cascade of smallersndiller new
promontories is pushed to infinity, but in natueeery cascade must stop or change chara@ter.”
Translational symmetry would be defined by motidm ¢ranslation; a figure is physically translated
a new position, yet though all parts have beerteshithe appearance is unchanglilateral
symmetry is symmetry under reflection. With frastahough they are crinkled, fragmented, or
convoluted shapes, you can zoom in and they wok loretty much the same as the picture you started
with- the intricate structure remains as the figarstatistically self-similar, while if you maggif
conventional curve it will only look flatter/strditer?* Surprisingly, there exist lots of objects likesthi
in mathematics. More realistic fractals requird-sehilarity to be interpreted statistically- eagart of
the fractal has the same statistical propertidorof.2®

Space is where fractals live; a fractal can bevetbas a subset of a metric space. The points in
the space are elements of the set, and thereiidwgte to the set. Metric spaces are of an “inttgren
simple geometric character,” but their subsetshteageometrically complicatéd A metric space
function measures the distance between a pairinfpim space. A fractal set contains infinitelgmy
points; their organization is very complex and oagnot describe it in terms of relationship between
different parts. The term “fractal” is a modifieleamt to exclude planes and lines. Fractal setbean
curves, surfaces, or “dusts” (point-sets). A fraianade of an infinite number of points, and va& c
only see a fraction of them. To see a fractal, {gotan be distributed to give the illusion of sgean

complete fractal figure. The Hénon mapping modeatas fractal dust. From these dust clouds, fsactal
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are created, built up according to the principla dinary/n-ary tree and subjected to an infinite
sequence of similarity transformations (rotatiae$lections). In the simple binary tree fractal,igbhis
confined within a right triangle, as the branchesggaller they get closer to the hypotenuse of the
right triangle, but they are always one branch awagl as such, there is a limit process invoffed.
Limit points are often used to describe fractdis; ilea that a sequence of numbers approach a limit
can be extended to a point set in a plane, whicmsehat it can be applied to fract&limits can be
added to the dust fractal to fill in any holes;itipoints can, in addition, produce a plane filling
fractal*®

Anything fractal obeys simple rules, and a singade can produce complexity. Fractal figures
can be scaled down and rotated, like the Koch ¢iB8ierpinski triangle, and the Julia sets.
Transformations, also known as mappings, on theepdaie procedures for moving points in a plane to
new locations; transformations can cause distestannd can alter shape. However, symmetries rely on
transformations that leave their patterns invaribimariance with respect to a transformation means
that if P is a point of the fractal , the pointaibed by transforming P will also belong to thecte®
Examples of transformation functions for basic syetmas include: T(x,y) = (x +a, y+b), which moves
a point a units up and b units over, R(x,y)=(x*&s(*sin(0), x*sin(0)+y*cos(©)), which is an example
of a counterclockwise rotation about the origirotigh6, and S(x,y)=(-x,y), a reflection across y-
axis>' Compositions of translations, as in S(T(x,y)), eso be created, and if S and T are symmetry
transformations then so are S(T(x,y)), as welSdsand T*. The combination of all possible
compositions is the orbit. Symmetry can also bateckfrom maps which distort, stretch, and twist,
like M6bius maps, discovered by August Mdbiustlomextended complex plane, which maps circles
to circles®

Dimension can be subjective, as with a piece i@&at- it can be viewed as a one dimensional
line but it could also, if you zoom in, be seeraahin cylinder. Fractals have fractal dimensia, a

fractals are “dimensionally discordant,” a concaftibuted to Felix Hausdorff in 1919; the Hausdélorf
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Besicovitch dimension, or the fractional dimensicates to the “capacity” of a figure and excetds
topological dimensiof® He invented a way of determining a “D-dimensiomalasurement” for a
unique number D, neither O nor infinity, in whichi®the Hausdorff dimensiofl. The degree of
irregularity of a fractal shape remains constamrall scales (regular irregularity), and the degyé
irregularity corresponds to efficiency of the figun taking up space. The Hausdorff dimension
“preserves the ordinary dimension's role as anomeept in defining a measure,” and curves with &hct
dimensions exceeding the topological dimension afelfractal curve¥ Dimension is given by:
D=log(N)/log(1/r), in which a self-similar object bl parts scaled by a ratio r. The dimension of the
Koch curve would be represented by: D=log(4)/logé&3)the Koch curve composed of 4 sub-segments
scaled down by 1/3. For the Koch curve, its dimemss equal to about 1.26. For another simple
example, consider a line. Now cut that in half, apd cut the two halves in half. N would equal 2d a
r would be %.. Thus D = 1, and of course a linenis dimensional. Fractal dimension still maintains
shapes of “regular” dimension; fractal dimensioreag with our intuitive notion of dimensiéhAs D
increases from 1 towards 2, the curves are less-fike,” and they start filling spaéA fractal with a
dimension between 0 and 1, like the Cantor Sets doecontain lines and is fractal defstA

multiplicity of different dimensions is unavoidaliléowever, this idea can help “transform the cqtce
of fractal from an intuitive to a mathematical dremd differences in fractal dimension highlight
differences in the non-topological aspect of fothey give a sense of the fractal foffis it does not
say much about what the geometric figure actualbks like, moreover, the fractal dimension can be
considered to be just a “by-product.”

The complexity of nature is not attributable toideatal randomness. The coexistence of both
determinism and accidental development is a ruteainre. Stochastic fractals take into account
“chance,” and the most useful fractals do involkarece; when a small disturbance is included in the
construction of a fractal, it serves as a modehfural objects. Deterministic fractal geometry

concerns “subsets of a space which are generajea pgssess invariance properties under simple
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geometrical transformations of the space intofits8lin deterministic geometry, structures are

“defined, communicated, and analyzed, with theadidlementary transformations, scaling, rotations,
and congruencies” The Julia sets are deterministic fractals, fomepie. A deterministic fractal is
also known as an attractor (“strange attractorsthay are also referred to, suggest that
mathematicians and scientists are highly surpiisetthese figures¥ An iterated function system is a
dynamical system, which possess attractors, anteaescribed as “simply a finite set of maps gctin
on a complete metric spac&.A dynamical system is a process that evolvese tiand they occur in
all branches of science- for example, economicswerther; even the simplest dynamical systems
which depends upon only one variable can creaghthiunpredictable results and essentially random
behavior,” which is in fact due to “chac A dynamical system reveals itself as a repeated
transformation of a plane and leads to self-singlwmetric patterns/fractalHenri Poincare
discovered dynamical systems, and it can be satdhth predicted fractal-like structures long before
Mandelbrot*® Poincare mappings are iterative mappings in theepthat are measure-conserving.
Fractals can be found truly everywhere. Fractahgygtry has been embraced in the applied
sciences and has offered insight into a wide aofayeas, like geology, particularly seismologyd an
biology, as there are fractals within the humanybad well as chaos theory. Mountains can be seen a
endless iterations of triangular shapes. The maanmface of craters is also fractal. Earthquakes ar
self-similar- large earthquakes are only scaleglargions of smaller ones. Plants have fractal
structures. The pattern of branching in a single ts self-similar. Biologists are now using a &ng
tree to describe how an entire rainforest workatals have helped them understand a forest's great
complexity. Mother Nature clearly has found thattals work best in creating life. Inside the human
body exist fractals, controlling many structurdse structures of our kidneys, lungs, and circulator
system (blood vessels are similar to the Koch cangeseem to perform “dimensional magic”) are

|47

fractal’’ A healthy heartbeat has a fractal pattern. Eyeamant also has a fractal pattern. They have

been present in art for years, for example HoksiSahe Great Wave.” Cell phones now employ the
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use of fractals in antenna design; a wider randeeqgfiencies are made possible if antennas are

constructed in self-similar patterns.
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“The Great Wave”

Weather systems are fractal. Meteorologist Edvarénz, in 1963, produced a system of
equations based on weather data and, by accidmhfydticed a strange occurrence when he iterated
his data set. While he could not accurately sed wha actually happening on the computers available
at the time, nonetheless, he had “boiled down vezdththe barest skeleton” and created a tiny model
of the Earth's weath&%.The Lorenz attractor, which resembles a buttenéyer intersects with itself;
it loops and spirals infinitely deep, yet stayshmitfinite space. “Strange attractors,” like thedaz
attractor, are created from iterative processdsatteanot area-conserving. His attractor is an smafg
“predictability giving way to pure randomness,” a@ntillustrated stability and the hidden structwk
a system that otherwise seemed patternf@dsvery much represented order disguised as randsm
Lorenz's system is of infinite complexity and higkknsitive to initial conditions. Lorenz's worlsal

gave rise to “the butterfly effect,” the suggestibat a flap of a butterfly's wings in Africa couwid on
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to cause a hurricane in Louisiana. The Lorenz@tiravas also a stepping stone in the developnfent o

the field of chaos theory.

The Lorenz Attractor

Chaos theory is how simple systems give rise topiex behavior or complex systems give rise
to simple behaviot’ The development of chaos theory marked the emechfctionism in science.
Everything tends towards disordéiFractals point to disorder, but scaling fractalads in a sense of
order’?> Chaos seems to be everywhere. It is the scientreeaflobal nature of systems and the
“universal behavior of complexity? It can also be classified as the study of nonlisgatems, with
nonlinear meaning that the “rule determining whptexe of a system is going to do next is not
influenced by what it is doing now?

Fractals have always existed, they were therenagtng to be discovered, but it took the
advent of the computer to finally expose them. Gbmplexity of nature and the existence of the

pathological monsters made things hard for mathieraas and scientists to understand. The
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nineteenth century monsters were banished to ahenadtical zoo,” as mathematicians saw no use or
interest in them, not until 1970s, when Mandellmarne along and suggested that one should look at
what it took to produce the figures, were they etaen seriously’ By 1975, fractal geometry was on
its way to becoming a new and exciting field in heihatics. Fractals offer ways of seeing infinityd a

we can now appreciate the potential these figuoéh
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