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Fractal Geometry: History and Theory 

 Classical Euclidean geometry cannot accurately represent the natural world; fractal geometry is 

the geometry of nature. Fractal geometry can be described as an extension of Euclidean geometry and 

can create concrete models of the various physical structures within nature. In short, fractal geometry 

and fractals are characterized by self-similarity and recursion, which entails scaling patterns, patterns 

within patterns, and symmetry across every scale. Benoit Mandelbrot, the “father” of fractal geometry, 

coined the term “fractal,” in the1970s, from the Latin “Fractus” (broken), to describe these infinitely 

complex scaling shapes. Yet, the basic ideas behind fractals were explored as far back as the 

seventeenth century; however, the oldest fractal is considered to be the nineteenth century's Cantor set. 

A variety of mathematical curiosities, “pathological monsters,” like the Cantor set, the Julia set, and the 

Peano space-filling curve, upset 19th century standards and confused mathematicians, who believed this 

demonstrated the ability to push mathematics out of the realm of the natural world. It was not until 

fractal geometry was developed in the 1970s that what past mathematicians thought to be unnatural 

was shown to be truly representative of natural phenomena. In the late 1970s and throughout the 1980s, 

fractal geometry captured world-wide interest, even among non-mathematicians (probably due to the 

fact fractals make for pretty pictures), and was a popular topic- conference sprung up and Mandelbrot's 

treatise on fractal geometry, The Fractal Geometry of Nature, was well-read even outside of the math 

community. Basically any form in nature can be described mathematically with fractals, and fractals 

offer a way to translate the natural world into mathematics. This paper will focus on a brief overview of 

the intricate history of fractal geometry and will lightly touch upon the mathematics behind fractals. 
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Sierpinski Triangle (D = 1.5849) and Carpet (D = 1.8928), two early fractals 

 Man-made geometric structures were the regular shapes and forms that mathematicians had 

concerned themselves with for thousands of years. Irregular shapes were at odds with classical 

mathematics; forms of nature existed outside of the world of mathematics. The nineteenth century saw 

huge extensions of the idea of symmetry and congruence, which drew from Euclidean and newly 

discovered non-Euclidean geometry. German mathematician Felix Klein, in 1872, suggested viewing 

geometry as “the study of the properties of a space which are invariant under a given group of 

transformations” and that geometry needed to include not only classic shapes but also the yet unnamed 

fractals and even movements (for example, Brownian motion, which is a “natural fractal”).1  Klein 

played with ideas of similar/symmetric objects and transformations/movements in the plane and found 

that studying the features of the object that were left unchanged by the transformations was the 

important idea.2 Klein described symmetry as a balance created by similar repetitions.3 Iterating the 

same motion over and over again a number of times creates a pattern or an object that is symmetrical 
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with respect to motion; the individual points of the figure change position but the pattern or the shape 

of the object, as a whole, remains unchanged.4 

 

Brownian Motion 

 The so-called “pathological monsters,” named so because they made no sense to nineteenth 

century mathematicians, did not fit in with the definitions of what a curve should be. They could not be 

classified as classic lines or shapes, and they represented objects that were mathematically infinite. The 

Cantor set is considered to be the earliest fractal, though the Apollonian gasket, constructed by a simple 

geometric procedure, dates back to the ancient Greeks. Discovered in 1883 by George Cantor, his set is 

comprised of infinitely many points and a simple self-similarity. The “paradoxical qualities” of figures 

like the Cantor set disturbed nineteenth century mathematicians. Things like this had no place in 

geometry of the past two thousand years.5 Presently, any fractal dust formed by “roughly self-similar 

repetition” is considered a Cantor set. The Cantor set begins with an interval between 0 and 1 on a line, 

the middle third of each successive segment is removed, this is repeated again and again, and soon, 
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many, many, many smaller line segments are created, twice as many segments at each stage, with each 

segment one third of the length from which it came from. The fractal dust is the set of points that is left 

behind and not removed. The Cantor set is, basically, the complete set mapped, by one transformation, 

onto a part of itself. A contemporary mathematician of Cantor would suggest that the set has a 

dimension of zero but in fact its dimension is about 0.6309. This set, especially, bothered many turn of 

the century mathematicians. However, it is an essential ingredient for many fractals.  

 

The Cantor Set 

 The Koch curve, another pathological monster, is more than a line but less than a plane, and it is 

a curve without any tangents; it is a continuous loop.  It was discovered by Helge von Koch in 1904. 

Every part is itself a miniature copy of the whole and is full of Cantor point-sets. The Koch snowflake 

is a figure of finite area but is infinitely long (infinite length in finite space). If you drew a circle around 

the Koch snowflake, the curve would never cross it. The Koch curve helped highlight the problem of 

defining the length of a coastline. A coastline is infinitely long, just like the Koch curve; you can 

always find finer and finer indentations to measure. Benoit Mandelbrot addressed the problem of 

measuring a coastline later on in his paper, “How Long is the Coastline of Britain?,” in which 

Mandelbrot suggested that while you could not measure the actual length, as it is infinite, you could 

measure its “roughness,” which required rethinking the notion of dimension. He proposed that the 

rougher something is, the higher the dimension it has. A coastline has a dimension greater than 1 (and 

less than 2), but each coastline has a different fractal dimension. Fractal dimension will be discussed 
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later within this paper. The monsters, as stated before, disturbed the turn of the century mathematicians; 

they were disrespectful to all reasonable intuition about shapes and forms. However, though they 

believed many of these were mere curiosities without practical value, now such “pathological curves” 

occur everywhere in pure and applied mathematics. 

 

The Koch Snowflake 

 Gaston Julia, in the early twentieth century, studied what happens when you take an equation, 

you put a number into the equation, and then, you take the number you get and put that back into the 

equation, and what happens if you keep on iterating the same process. What one ends up with is a set. 

However, you cannot compute or know the whole set. Julia knew his sets could not be described with 

words or any concepts found within Euclidean geometry. Julia's work contained no images; his 

elaborate sets only existed in his mind. The contents of his work were largely ignored for half a century 

until the advent of the computer made everything possible. Julia fractals involve iterative mappings 

involving complex numbers and functions, but with the property that all angles remain the same.6 These 

fractals occur often in mathematics. There are two types of Julia fractals- wholly connected or wholly 



Smith 6 

disconnected, where the former is made up of infinite separate points (Cantor). If connected, the fractal 

is a succession of lines, like a single closed curve, loops with loops with loops, or a dendrite.7 The Julia 

sets, much like the nineteenth century monsters, demanded the use of fast computers. Computers make 

iteration easy. The extent of the Julia set and monsters would not be known until Mandelbrot started his 

own work on what would go onto to be named fractal geometry.  

 

An Example of a Julia Set, D = 2 

 Pythagoras studied the figure in which squares were placed on sides of a right triangle and 

proved that the sum of the areas of the squares on two sides would equal that of the square on the 

hypotenuse; this figure has since grew into the Pythagoras tree. In 1957 A.E. Bosman wrote a book on 

the geometrical shapes found in nature. He relied on the spiral motif found in figures, like shells. 

Spirals have become the building blocks of fractals and can be thought of a the building blocks of the 

natural world.8 Bosman also created the Pythagoras tree in 1942, which is full of spirals and is a “fine 
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example of a mathematical fractal.”9 The lopsided Pythagoras tree is a generalization in which a square 

is followed by an arbitrary right triangle; it's a curled shape is determined by a similarity 

transformation. The dimension of both trees is 2. 

 

The Pythagoras Tree and Loop-sided Pythagoras Tree 

 As early as 1960, Mandelbrot had an inkling about the existence of fractals. He had dabbled in 

economics and found an odd pattern in cotton prices, after he visited a Harvard professor, who could 

not get the prices changes to fit the bell curve. Mandelbrot, instead, looked for patterns across every 

scale and symmetry among both the large and small scales. When he plugged the prices into a 

computer, he found that though each price was random and unpredictable, the sequence of changes was 

independent of scale, and that the curves for daily price changes matched those of monthly price 

changes- there was an unexpected kind of order.10 Instead of separating the tiny changes from the big 

ones, Mandelbrot bound them together in patterns across every scale.11 His next early encounter with 

fractals was studying noise error. IBM engineers were concerned with noise in telephone lines. The 

transmission noise was random, but came in clusters, and the more closely one looked at the clusters 

the more complicated the patterns of errors seemed. Mandelbrot found that on scales of an hour or a 

second the proportion of error-free periods to error-ridden periods remained constant. He recognized 
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this as a Cantor set. 

 Mandelbrot was lucky in that he had access to the advanced computing sources at IBM, which 

could draw the seemingly complex transformations required by the “pre-fractals.” Mandelbrot 

employed many techniques discovered by the early twentieth century mathematicians that had been 

largely forgotten by the 1970s.12 Earlier mathematicians, like Julia, could not create images, as 

Mandelbrot said, “There was a long hiatus of a hundred years where drawing did not play any role in 

mathematics because hand and pencil and ruler were exhausted.” He believed there was a decades long 

absence of intuition in mathematics. In 1979, while exploring the iteration of complicated processes, 

like equations with square roots and sines and cosines, Mandelbrot discovered that he could create one 

image in the complex plane that could serve as a catalog of Julia sets.13 Mandelbrot plotted the Julia 

sets on graphs, and he was able to create the complex self-similar figures Julia could only imagine. By 

1980, he discovered an equation that combined all the Julia sets, f(z) = z^2 + c, and when iterated, he 

obtained his own set, a road-map of all Julia sets- what is now known as the Mandelbrot set. 

 

The Mandelbrot Set, “ a Road-map of the Julia Sets” 

 There are those who considered the Mandelbrot set to be the most complex and beautiful object 

ever encountered in mathematics. It seems to be “more fractal than any fractal.” Yet, its dimension is 2. 
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The set can be “interpreted as an illustrated encyclopedia of an infinite number of algorithms.”14 He 

first thought it was one continent, a cardioid with adjoining circles, but what he thought was bits of 

photographic dust turned out, at successive enlargements, to be miniature continents. Only in the late 

1980s was it found to that everything in the set is connected by meandering lines like cobwebs.15 The 

boundary of the Mandelbrot set is “where a program spends most of its time and makes all of its 

compromises;” the boundary is “where points are slowest to escape the pull of the set.”16 Every point in 

the complex plane is either in the Mandelbrot set or outside of it. Cataloging the different images 

within it or producing a numerical description of the set's outline would require an infinite amount of 

information.17 

 The eye, again according to Mandelbrot, had been banished out of science, and fractals brought 

it back in. Mandelbrot issued a bold statement about the state of mathematics and posed a challenged- 

mathematicians needed to rethink what mathematics could do. Initially, mathematicians did not accept 

Mandelbrot's work. They continued clinging to old paradigms; they were too habituated to working 

with smooth curves. He responded with his seminal work, The Fractal Geometry of Nature, in which 

he illustrated how fractals could give precise measurements for natural shapes and how calculations 

could be applied to all sorts of formations and natural systems. He proposed a new science and a new 

way of looking at world- a deeper way of understanding nature with mathematics.  

These fractal figures have always been there, it only took the development of fractal geometry 

to show them- fractal geometry made the invisible, visible. Fractal geometry was indeed a new 

language that was dependent, not on basic shapes like circles and triangles as in Euclidean geometry, 

but instead upon algorithms, which could be transformed into curves, shapes, and structures only with 

the aid of a computer. Euclidean shapes are described by simple algebraic formulas, but fractals rely on 

recursive algorithms to produce them. A fractal curve “implies an organizing structure that lies hidden 

among the hideous complication of shapes.”18 Iteration is key to creating fractals. When you iterate an 

equation instead of solving it, it becomes a process instead of a description; it is now dynamic instead 
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of static.19 The simplest symmetrical figure of this nature is that of a shape which repeats itself 

infinitely, moving in the same fixed distance and in the same fixed direction.20 There are an infinite 

number of scales within a mathematical fractal. Above all fractal means self-similarity, which leads to 

symmetry across scale and patterns inside of patterns. According to Mandelbrot, the notion that 

different parts of a figure is self-similar only applies between certain limits. When each piece of a 

shape is geometrically similar to the whole, both the shape and the “cascade,” the generating 

mechanism, are self-similar.21 To obtain a Koch curve, a “cascade of smaller and smaller new 

promontories is pushed to infinity, but in nature, every cascade must stop or change character.”22 

Translational symmetry would be defined by motion of a translation; a figure is physically translated to 

a new position, yet though all parts have been shifted, the appearance is unchanged.23 Bilateral 

symmetry is symmetry under reflection. With fractals, though they are crinkled, fragmented, or 

convoluted shapes, you can zoom in and they will look pretty much the same as the picture you started 

with- the intricate structure remains as the figure is statistically self-similar, while if you magnify a 

conventional curve it will only look flatter/straighter.24 Surprisingly, there exist lots of objects like this 

in mathematics. More realistic fractals require self-similarity to be interpreted statistically- each part of 

the fractal has the same statistical properties of form.25 

 Space is where fractals live; a fractal can be viewed as a subset of a metric space. The points in 

the space are elements of the set, and there is structure to the set. Metric spaces are of an “inherently 

simple geometric character,” but their subsets can be geometrically complicated.26 A metric space 

function measures the distance between a pair of points in space.  A fractal set contains infinitely many 

points; their organization is very complex and one cannot describe it in terms of relationship between 

different parts. The term “fractal” is a modifier meant to exclude planes and lines. Fractal sets can be 

curves, surfaces, or “dusts” (point-sets). A fractal is made of an infinite number of points, and we can 

only see a fraction of them. To see a fractal, points can be distributed to give the illusion of seeing a 

complete fractal figure. The Hénon mapping model creates fractal dust. From these dust clouds, fractals 
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are created, built up according to the principle of a binary/n-ary tree and subjected to an infinite 

sequence of similarity transformations (rotations, reflections). In the simple binary tree fractal, which is 

confined within a right triangle, as the branches get smaller they get closer to the hypotenuse of the 

right triangle, but they are always one branch away, and as such, there is a limit process involved.27 

Limit points are often used to describe fractals; the idea that a sequence of numbers approach a limit 

can be extended to a point set in a plane, which means that it can be applied to fractals.28 Limits can be 

added to the dust fractal to fill in any holes; limit points can, in addition, produce a plane filling 

fractal.29 

 Anything fractal obeys simple rules, and a simple code can produce complexity. Fractal figures 

can be scaled down and rotated, like the Koch curve, Sierpinski triangle, and the Julia sets. 

Transformations, also known as mappings, on the plane are procedures for moving points in a plane to 

new locations; transformations can cause distortions and can alter shape. However, symmetries rely on 

transformations that leave their patterns invariant. Invariance with respect to a transformation means 

that if P is a point of the fractal , the point obtained by transforming P will also belong to the fractal.30 

Examples of transformation functions for basic symmetries include: T(x,y) = (x +a, y+b), which moves 

a point a units up and b units over, R(x,y)=(x*cos(θ)-y*sin(θ), x*sin(θ)+y*cos(θ)), which is an example 

of a counterclockwise rotation about the origin through θ, and S(x,y)=(-x,y), a reflection across y-

axis.31 Compositions of translations, as in S(T(x,y)), can also be created, and if S and T are symmetry 

transformations then so are S(T(x,y)), as well as, S-1 and T-1. The combination of all possible 

compositions is the orbit. Symmetry can also be created from maps which distort, stretch, and twist, 

like Möbius maps,  discovered by August Möbius, on the extended complex plane, which maps circles 

to circles.32 

 Dimension can be subjective, as with a piece of thread- it can be viewed as a one dimensional 

line but it could also, if you zoom in, be seen as a thin cylinder. Fractals have fractal dimension, as 

fractals are “dimensionally discordant,” a concept attributed to Felix Hausdorff in 1919; the Hausdorff-
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Besicovitch dimension, or the fractional dimension, relates to the “capacity” of a figure and exceeds the 

topological dimension.33 He invented a way of determining a “D-dimensional measurement” for a 

unique number D, neither 0 nor infinity, in which D is the Hausdorff dimension.34 The degree of 

irregularity of a fractal shape remains constant over all scales (regular irregularity), and the degree of 

irregularity corresponds to efficiency of the figure in taking up space. The Hausdorff dimension 

“preserves the ordinary dimension's role as an  exponent in defining a measure,” and curves with fractal 

dimensions exceeding the topological dimension of 1 are fractal curves.35 Dimension is given by: 

D=log(N)/log(1/r), in which a self-similar object of N parts scaled by a ratio r. The dimension of the 

Koch curve would be represented by: D=log(4)/log(3), as the Koch curve composed of 4 sub-segments 

scaled down by 1/3. For the Koch curve, its dimension is equal to about 1.26. For another simple 

example, consider a line. Now cut that in half, and now cut the two halves in half. N would equal 2, and 

r would be ½. Thus D = 1, and of course a line is one dimensional. Fractal dimension still maintains 

shapes of “regular” dimension; fractal dimension agrees with our intuitive notion of dimension.36 As D 

increases from 1 towards 2, the curves are less “line-like,” and they start filling space.37 A fractal with a 

dimension between 0 and 1, like the Cantor Set, does not contain lines and is fractal dust.38 “A 

multiplicity of different dimensions is unavoidable;” however, this idea can help “transform the concept 

of fractal from an intuitive to a mathematical one,” and differences in fractal dimension highlight 

differences in the non-topological aspect of form- they give a sense of the fractal form.39 As it does not 

say much about what the geometric figure actually looks like, moreover, the fractal dimension can be 

considered to be just a “by-product.”  

The complexity of nature is not attributable to accidental randomness. The coexistence of both 

determinism and accidental development is a rule in nature. Stochastic fractals take into account 

“chance,” and the most useful fractals do involve chance; when a small disturbance is included in the 

construction of a fractal, it serves as a model for natural objects. Deterministic fractal geometry 

concerns “subsets of a space which are generated by, or possess invariance properties under simple 
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geometrical transformations of the space into itself.” 40 In deterministic geometry, structures are 

“defined, communicated, and analyzed, with the aid of elementary transformations, scaling, rotations, 

and congruencies.”41 The Julia sets are deterministic fractals, for example. A deterministic fractal is 

also known as an attractor (“strange attractors,” as they are also referred to, suggest that 

mathematicians and scientists are highly surprised by these figures).42 An iterated function system is a 

dynamical system, which possess attractors, and can be described as “simply a finite set of maps acting 

on a complete metric space.”43 A dynamical system is a process that evolves in time, and they occur in 

all branches of science- for example, economics and weather; even the simplest dynamical systems 

which depends upon only one variable can create “highly unpredictable results and essentially random 

behavior,” which is in fact due to “chaos.”44 A dynamical system reveals itself as a repeated 

transformation of a plane and leads to self-similar geometric patterns/fractals.45 Henri Poincare 

discovered dynamical systems, and it can be said that he predicted fractal-like structures long before 

Mandelbrot.46 Poincare mappings are iterative mappings in the plane that are measure-conserving. 

 Fractals can be found truly everywhere. Fractal geometry has been embraced in the applied 

sciences and has offered insight into a wide array of areas, like geology, particularly seismology, and 

biology, as there are fractals within the human body, as well as chaos theory. Mountains can be seen as 

endless iterations of triangular shapes. The moon's surface of craters is also fractal. Earthquakes are 

self-similar- large earthquakes are only scaled up versions of smaller ones. Plants have fractal 

structures. The pattern of branching in a single tree is self-similar. Biologists are now using a single 

tree to describe how an entire rainforest works; fractals have helped them understand a forest's great 

complexity. Mother Nature clearly has found that fractals work best in creating life. Inside the human 

body exist fractals, controlling many structures- the structures of our kidneys, lungs, and circulatory 

system (blood vessels are similar to the Koch curve and seem to perform “dimensional magic”) are 

fractal.47 A healthy heartbeat has a fractal pattern. Eye movement also has a fractal pattern. They have 

been present in art for years, for example Hokusai's “The Great Wave.” Cell phones now employ the 



Smith 14 

use of fractals in antenna design; a wider range of frequencies are made possible if antennas are 

constructed in self-similar patterns.  

 

“The Great Wave” 

 Weather systems are fractal. Meteorologist Edward Lorenz, in 1963, produced a system of 

equations based on weather data and, by accident, had noticed a strange occurrence when he iterated 

his data set. While he could not accurately see what was actually happening on the computers available 

at the time, nonetheless, he had “boiled down weather to the barest skeleton” and created a tiny model 

of the Earth's weather.48 The Lorenz attractor, which resembles a butterfly, never intersects with itself; 

it loops and spirals infinitely deep, yet stays within finite space. “Strange attractors,” like the Lorenz 

attractor, are created from iterative processes that are not area-conserving. His attractor is an image of 

“predictability giving way to pure randomness,” and it “illustrated stability and the hidden structure of 

a system that otherwise seemed patternless.”49 It very much represented order disguised as randomness. 

Lorenz's system is of infinite complexity and highly sensitive to initial conditions. Lorenz's work also 

gave rise to “the butterfly effect,” the suggestion that a flap of a butterfly's wings in Africa could go on 



Smith 15 

to cause a hurricane in Louisiana. The Lorenz attractor was also a stepping stone in the development of 

the field of chaos theory. 

 

The Lorenz Attractor  

 Chaos theory is how simple systems give rise to complex behavior or complex systems give rise 

to simple behavior.50 The development of chaos theory marked the end of reductionism in science. 

Everything tends towards disorder.51 Fractals point to disorder, but scaling fractals brings in a sense of 

order.52 Chaos seems to be everywhere. It is the science of the global nature of systems and the 

“universal behavior of complexity.”53 It can also be classified as the study of nonlinear systems, with 

nonlinear meaning that the “rule determining what a piece of a system is going to do next is not 

influenced by what it is doing now.”54 

 Fractals have always existed, they were there just waiting to be discovered, but it took the 

advent of the computer to finally expose them. The complexity of nature and the existence of the 

pathological monsters made things hard for mathematicians and scientists to understand. The 
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nineteenth century monsters were banished to a “mathematical zoo,” as mathematicians saw no use or 

interest in them, not until 1970s, when Mandelbrot came along and suggested that one should look at 

what it took to produce the figures, were they even taken seriously.55 By 1975, fractal geometry was on 

its way to becoming a new and exciting field in mathematics. Fractals offer ways of seeing infinity, and 

we can now appreciate the potential these figures hold.56 
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