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The Pollard’s Rho Method for Factoring Numbers 

 We are all familiar with the concepts of prime and composite numbers. We also know 

that a number is either prime or a product of primes. The Fundamental Theorem of Arithmetic 

states that every integer n ≥ 2 is either a prime or a product of primes, and the product is unique 

apart from the order in which the factors appear (Long, 55). The number 7, for example, is a 

prime number. It has only two factors, itself and 1. On the other hand 24 has a prime 

factorization of 23 × 3. Because its factors are not just 24 and 1, 24 is considered a composite 

number. The numbers 7 and 24 are easier to factor than larger numbers. We will look at the 

Sieve of Eratosthenes, an efficient factoring method for dealing with smaller numbers, followed 

by Pollard’s rho, a method that allows us how to factor large numbers into their primes. 

  The Sieve of Eratosthenes allows us to find the prime numbers up to and including a 

particular number, n. First, we find the prime numbers that are less than or equal to	√�. Then we 

use these primes to see which of the numbers √� ≤ n - k, ..., n - 2, n - 1 ≤ n these primes properly 

divide. The remaining numbers are the prime numbers that are greater than√� and less than or 

equal to n. This method works because these prime numbers clearly cannot have any prime 

factor less than or equal to√�, as the number would then be composite. Also, it cannot be the 

product of two numbers greater than or equal to√�, as the number would still be composite and 

greater than n (Nagel, 51-52).  
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 We will now use the Sieve of Eratosthenes to find the prime numbers between 1 and 31. 

Since 5 ≤ √31 ≤ 6, we will cross out all of the numbers between 2 and 31 that are properly 

divisible by 2, 3, or 5. We do this because these numbers are composite, as each has factors other 

than itself and 1. For example, we cross the number 14 out because 2 divides it. Since 2 is a 

factor of 14, 14 is clearly composite. The remaining numbers are the prime numbers from 2 to 31 

inclusive. They are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, and 31. This method is effective for finding 

the prime numbers up to and including a number, n, that is relatively small. If we needed to find 

the primes from 2 to 106, we would have to do approximately 103 trial divisions using the Sieve 

of Eratosthenes. Since this method is not efficient for large numbers, we can use Pollard’s rho to 

factor large numbers into their primes. 

 Before we study how Pollard’s rho works on paper, we will first look at the pseudo code 

that can be implemented into a computer program, using a computer language such as C++. 

Once the pseudo code is correctly translated into the specific programming language, the 

program will output the prime factorization for a number (small or large) that we input. Look at 

Figure 1, which portrays the pseudo code for Pollard’s rho. The numbers on the left represent the 

steps of the algorithm. 

 

 

 

 

 

 

 

 POLLARD-RHO(n) 
 (1)  i � 1 
 (2)  x1 �RANDOM(0, n - 1) 
 (3)  y � x1 
 (4)  k �2 
 (5)  while TRUE 
 (6)     do i � i + 1  
 (7)          xi � (x2

i-1 - 1)mod n 
 (8)          d � gcd (y - xi, n) 
 (9)          if d ≠ 1 and d ≠ n 
 (10)        then print d 
 (11)       if  i = k 
 (12)      then y � xi 
 (13)                 k � 2k 

Figure 1 
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 We will demonstrate this algorithm step-by step by factoring 1909 into its primes. In step 

1, we initialize i to be 1. Thus, we will start at x1. In step 2, we set x1 to a random number 

between 0 and n -1. For the purposes of this paper, we will set x1 = 2. For step 3, we store our x1 

as our y. Thus, we save 2 as our y-value. Line 5 starts our process of finding factors of a number 

n; in our case, 1909. Line 6 increments our value of i so that we produce x1, x2, x3, and so on 

infinitely. 

We will now proceed to compute Pollard’s rho by hand. We start with the formula xi + 1 = 

(xi
2 - 1) mod n, where i denotes the ith x-term and n denotes the number to be factored. We 

already set x1 = 2, so using the formula, we obtain x2 = (22 - 1) mod 1909 = 3 mod 1909 = 3. 

Next, x3 = (32 - 1) mod 1909 = 8 mod 1909 = 8. Similarly, x4 = 63. 

 Following this pattern, x5 = 150, x6 = 1500, x7 = 1197, x8 = 1058, x9 = 689, x10 = 1288, x11 

= 22, x12 = 483, x13 = 390, and x14 = 1288. Notice that 1288 repeats itself. We shift our attention 

to Figure 2 below. Please note that the values denoted by i represent our xi values. Notice the 

values of x10, x11, x12, and x13 repeat infinitely in a loop, thus forming a rho.  

 

Figure 2 
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 Since our xi values represent the remainders, these values will have to repeat since there 

can only be 1909 possible remainders for the number 1909. This is because when dividing a 

number by 1909, the remainder is always between 0 and 1908. So, if we run the algorithm for 

1910 steps, at least one of these xi-values (our remainders) will have to appear more than once. 

We should find at most 1909 remainders. However, in practice, we generally repeat well before 

our remainders are used up. In this case, we repeated after having seen 14 different remainders. 

 The next step to finding the primes of 1909 using this factoring method is to find d = (y – 

xi, n), the greatest common divisor. Note that this is line 8 of the pseudo code. We need to find 

our y-values in order to find the greatest common divisor. To do this, we must first understand 

the pseudo code. Note that line 4 of the pseudo code initializes some k to 2. We jump to line 11, 

where there is an if-statement that is utilized when i = k. When this happens, the current xi value 

is stored as a y-value, and the current k-value is multiplied by 2. In the case of our example, we 

store x1 as a y-value initially. Then we look at x2. Since i = k =2, we utilize our if-statement. Our 

x2-vlaue is stored as a y-value. Also, our k is doubled to 4. This y-value remains the same until i 

= k again. So we store x4 as our y-value. Similarly, we store x8 and x16 as y-values. We can 

continue this infinitely, as long as our i-values are powers of 2. Our stored y-values are written in 

purple in Figure 2. 

 Now we can find the greatest common divisor. The first calculation that we perform is (2 

– 2, 1909) = (0, 1909) = 1909. We use the Euclidian Algorithm to find the greatest common 

divisors; however, since showing the steps is a trivial matter, we will proceed without 

explanation. We change our y-values accordingly and proceed until we find the greatest common 

divisor. When we subtract our x10 from our current y-value, we find the greatest common divisor. 

Thus, (1058 – 1288, 1909) = (-230, 1909) = 23. Look at line 9 of the pseudo code. Since d ≠ 1 
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and d ≠ n, the program will print d (Cormen, 845-847). In our case, the program would print 23 

as one of the factors of 1909.  This factor also happens to be prime, which is what we are hoping 

for. We use this method of finding the greatest common divisor because it is known to work; it is 

a successful heuristic technique. Look at Figure 3 below, which shows the xi-values, the y-

values, the calculations for the greatest common divisor, and the greatest common divisor for the 

first twenty i-values. 

Figure 3:  

i xi y (y - xi, 1909) gcd 

1 2 2 (2-2, 1909) 1909 

2 3 = (22-1) mod 1909 3 (3-3, 1909) 1909 

3 8 = (32-1) mod 1909 3 (3-8, 1909) 1 

4 63 = (82-1) mod 1909 63 (63-63, 1909) 1909 

5 150 = (632-1) mod 1909 63 (63-150, 1909) 1 

6 1500= (1502-1) mod 1909 63 (63-1500, 1909) 1 

7 1197= (15002-1) mod 1909 63 (63-1197, 1909) 1 

8 1058= (11972-1) mod 1909 1058 (1058-1058, 1909) 1909 

9 689= (10582-1) mod 1909 1058 (1058-689, 1909) 1 

10 1288= (6892-1) mod 1909 1058 (1058-1288, 1909) 23 

11 22= (12882-1) mod 1909 1058 (1058-1288, 1909) 1 

12 483= (222-1) mod 1909 1058 (1058-483, 1909) 1 

13 390= (4832-1) mod 1909 1058 (1058-390, 1909) 1 

14 1288= (3902-1) mod 1909 1058 (1058-1288, 1909) 23 

15 22= (12882-1) mod 1909 1058 (1058-22, 1909) 1 
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16 483= (222-1) mod 1909 483 (483-483, 1909) 1909 

17 390= (4832-1) mod 1909 483 (483-390, 1909) 1 

18 1288= (3902-1) mod 1909 483 (483-1288, 1909) 1 

19 22= (12882-1) mod 1909 483 (483-22, 1909) 1 

20 483= (222-1) mod 1909 483 (483-483, 1909) 1909 

 

 Thus, 1909 is composite. Pollard’s rho found 23 to be a factor of 1909. In order to factor 

the number further, we could run the algorithm on 23 and 1909/23 = 83.  

 Now we look at a larger number, 11347, to factor using Pollard’s rho. As in the previous 

example, we set x1 = 2. We find x2 = 3, x4 = 63, x5 = 3968, and x6 = 6734. Pollard’s rho will find 

a prime factor after we reach x6. We perform d = (y - xi, n) = (63 - 6734, 11347) = (-6671, 11347) 

= 7. A second implementation of Pollard’s rho on 7 and 11347/7 shows that our factors, which 

are prime, of 11347 are 7 and 1621. 

 Now we will study how long it takes to repeat remainders; the repetition could occur 

during early iterations or much later on. When looking at 1909, our numbers started repeating at 

x14. Note that it could take as many repetitions as there are remainders for a number to repeat. 

When looking at 11347, it could potentially take until x11347 to start repeating the cycle and 

forming the rho. We will look at Figure 4 to see the first fifty remainders of 11347 using 

Pollard’s rho. Notice how not one of these numbers repeats itself. If we were to continue trying 

to find where the remainders repeat, we could find the repetition as soon as x51 or as late as x11347, 

so we will just stop here.  
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Figure 4: 

x1 = 2 x2 = 3 x3 = 8 x4 = 63 x5 = 3968 

x6 = 6734 x7 = 4143 x8 = 7784 x9 = 9022 x10 = 4452 

x11 = 8441 x12 = 2667 x13 = 9666 x14 = 357 x15 = 2631 

x16 = 490 x17 = 1812 x18 = 4060 x19 = 7755 x20 = 924 

x21 = 2750 x22 = 5397 x23 = 11206 x24 = 8533 x25 = 9736 

x26 = 8204 x27 = 6558 x28 = 2233 x29 = 4955 x30 = 8463 

x31 = 104 x32 = 10815 x33 = 10695 x34 = 5264 x35 = 321 

x36 = 917 x37 = 1210 x38 = 336 x39 = 10772 x40 = 1561 

x41 = 8462 x42 = 5873 x43 = 8595 x44 = 5054 x45 = 818 

x46 = 10997 x47 = 9029 x48 = 5992 x49 = 2155 x50 = 3101                                                                         

 

 We will factor one more number using Pollard’s rho: 1695. This is slightly different than 

the other numbers, but we start the same way. Figure 5 below demonstrates our process. 

Figure 5: 

i xi y (y - xi, 1695) gcd 

1 2 2 (2-2, 1695) 1695 

2 3= (22 – 1) mod 1695 3 (3-3, 1695) 1695 

3 8= (32 – 1) mod 1695 3 (3-8, 1695) 1 

4 63= (82 – 1) mod 1695 63 (63-63, 1695) 1695 

5 578= (632 – 1) mod 1695 63 (63-578, 1695) 5 

 



Foote 8 
 

 Pollard’s rho finds a factor of 5. So, we run Pollard’s rho on 5 and 339, the quotient of 

1695/5. Figure 6 shows us this process on the number 339.  

Figure 6: 

i xi y (y - xi, 339) gcd 

1 2 2 (2-2, 339) 339 

2 3=(22-1) mod 339 3 (3-3, 339) 339 

3 8=(32-1) mod 339 3 (3-8, 339) 1 

4 63=(82-1) mod 339 63 (63-63, 339) 339 

5 239=(632-1) mod 339 63 (63-239, 339) 1 

6 168=(2392-1) mod 339 63 (63-168, 339) 3 

 

 We proceed to run Pollard’s rho on 3 and 339/3 = 113, and Pollard’s rho finds 3 and 13 

as prime factors of 1695. Thus, the prime factors of 1695 are 3, 5, and 113.  

 Pollard’s rho will not always work. For example, it will not factor 12 into its primes; 

subsequently, the program will say that 12 is a prime number. Look at the following table that 

represents the process of Pollard’s rho on 12. 

 

Figure 7: 

i xi y (y - xi, 12) gcd 

1 2 2 (2-2, 12) 12 

2 3 = (22 – 1) mod 12 3 (3-3, 12) 12 

3 8 = (32 – 1) mod 12 3 (3-8, 12) 1 

4 3 = (82 – 1) mod 12 3 (3-3, 12) 12 
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5 8 = (32 – 1) mod 12 3 (3-8, 12) 1 

6 3 = (82 – 1) mod 12 3 (3-3, 12) 12 

7 8 = (32 – 1) mod 12 3 (3-8, 12) 1 

8 3 = (82 – 1) mod 12 3 (3-3, 12) 12 

 

Our program enters an infinite loop at x4, and it repeats 3 and 8 infinitely. We normally 

can be sure it is prime because for our y - xi, we are only going to subtract 3-3 and 3-8 infinitely, 

which are relatively prime to 12. Since our greatest common divisors are 12 and 1 respectively, 

Pollard’s rho will assume 12 is prime, even though it is not. For example, if we wanted to factor 

24, Pollard’s rho will say that the prime factors of 24 are 12 and 2. Thus, Pollard’s rho is not 

completely reliable. Similarly, Pollard’s rho will find 4 and 6 to be prime, and possibly other 

numbers. 

 Now we will perform analysis of Pollard’s rho. First, we will look to see just how many 

iterations it takes to actually find a prime factor. If we are “lucky,” we should find our prime 

factor by around √�
�  iterations (Cormen 845). We will refer to two of our previous examples. 

Note that √1909
�  	 6.6, so we could have been as lucky as to find our prime divisor around six 

or seven iterations. Unfortunately, it took us until our tenth iteration to find our prime divisor. 

For our example 11347, we expected to find our prime divisor around ten or eleven iterations, 

but we were extremely lucky and found it at the sixth iteration. 

 A probabilistic analysis explains why we can expect to find the factor so quickly. A 

famous example of probabilistic analysis is the “birthday paradox,” which states that if there are 

23 people in one room, there is a 50% chance that two of those people have the same birthday. 

We start this calculation with just one person in the room. The probability that this person will 



Foote 10 
 

not have the same birthday as anyone else in the room is 365/365 = 100%. (Clearly this has to be 

the case if there is only one person present.) We will call this event P(A). Next, we find the 

probability that two people in the room do not have the same birthday. Note that these events are 

independent of one another. We find the probability that the second person in the room does not 

have the same birthday as anyone else in the room. This probability is 364/365, and we will 

denote this by P(B). We make this probability 364/365 because there is a 1/365 chance that this 

second person will have the same birthday as the first. When we multiply P(A) and P(B) to get 

(365/365)(364/365), we find there is approximately a 99.73% chance that two people in the room 

will not have the same birthday.  

 We continue this process in similar fashion. For three people in the room, when we 

multiply (365/365)(364/365)(363/365), we find there is approximately a 99.18% chance that 

three people in the room will not have the same birthday. We continue the calculation up until 

we have 23 people. We multiply (365/365)(364/365)(363/365)(362/365)…(343/365)(342/365), 

which approximately equals a 50.0% chance that two people in the room will not have the same 

birthday. Of course, we could rephrase it to say there is approximately a 50% chance that two 

people in the room will have the same birthday when there are 23 people present. Note that 23 ≈ 

√365 ≈ 19. Of course, this probability will increase as more people are added to the room. 

 A similar probabilistic analysis is used for determining how likely it is that our 

remainders will repeat. Note that this procedure is the same as the birthday paradox. We will 

look at our example of 1909 to illustrate this. We look for the probability that choosing one 

number out of 1909 possible remainders will be different from the rest of the remainders. This 

probability is (1909/1909) = 1. We proceed to find the probability that choosing two numbers out 

of 1909 possible remainders will be different from each other. When we multiply 
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(1909/1909)(1908/1909), we find there is approximately a 99.95% chance that choosing two 

numbers out of 1909 possible remainders will be different from one another. We continue this 

pattern. When we multiply (1909/1909)(1908/1909)(1907/1909)(1906/1909)…(1895/1909), we 

find there is approximately a 94.64 % chance that choosing two remainders out of 1909 possible 

remainders will be different from each other after choosing fifteen numbers. Clearly, this 

probability will decrease as we choose more numbers. Note that for our example of 1909, we 

found our repeating remainders at our fourteenth iteration. We definitely “beat the odds” of 

having our remainders repeat so early in the process  

 It is here that we note the significance of√�. It can be shown that a repeat in remainders 

should happen with a 50% probability around √� iterations. To find a 50% chance that there are 

repeating remainders of the number 1909, one must do fifty-two iterations. This is approximately 

equal to √1909 ≈ 43. 

 All of this shows that we expect to find a divisor of n around √�
�  iterations. Since we 

expect our remainders to start repeating around√�, we can expect to find our divisor around√�
� . 

The reason we expect this is because when we try to find d = (y – xi, n), we choose our y-values 

in such a way (xi-values where the i-values are powers of 2) so that the xi-values become 

exponentially larger than the y-values. This increases our chances of efficiently finding d = (y – 

xi, n), and thus leading to a divisor, hopefully one that is prime, of a number n. 

 Pollard’s rho is a method we use for factoring large numbers into their primes. We can do 

this method by hand or via a computer program. It can be very efficient if we are “lucky” or very 

inefficient if we are “unlucky.” It does not always work, as numbers such as 4, 6, and 12 cannot 

be effectively factored into their primes. We can test our efficiency of Pollard’s Rho by using 
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probabilistic analysis. Although not the most efficient of factoring methods, it is more efficient 

than the very tedious Sieve of Eratosthenes. 
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