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Hyperbolic Geometry and its Many Models 

 Unlike Euclid’s geometry, non-Euclidean geometry is a relatively new idea that was not 

discovered until the eighteenth century, and its discovery is not without controversy.  Janos 

Bolyai, who read the first six books of Euclid’s Elements by age twelve, privately worked on the 

topic inspired by his father’s work in proving the fifth postulate.  Originally, Farkas Bolyai tried 

to convince his son to stop his research saying, “…it may take all your time, and deprive you of 

your health, peace of mind, and happiness in life.”1  Bolyai’s father was great friends with the 

most prominent mathematician of the time, Friedrich Gauss.  Trusting his friend, Farkas sent his 

son’s work to him.  Unfortunately, Gauss wrote back and claimed that he had already discovered 

all of Bolyai’s results, but was simply waiting to publish them.  Crushed, Janos Bolyai fell into a 

deep depression and never went any farther or published any more of his work in non-Euclidean 

geometry.  There is some evidence that Gauss had actually been working on similar results to 

Bolyai’s, but he was too afraid to publish them.  He feared the contempt of the metaphysicians 

and, as a perfectionist, he did not want to publish incomplete results.  The third player in the 

discovery of this new kind of geometry was Nikolai Ivanovich Lobachevsky.  He was a Russian 

who was the first to write a formal publication regarding non-Euclidean geometry in 1829.  Just 

as Gauss had feared, he received much criticism.  However, he had the drive to continue 

publishing.  Eventually, Gauss conceded that “Lobachevsky carried out the task in a masterly 

                                                 
      1 Carl B. Boyer, A History of Mathematics, revised by Uta C. Merzbach (New York: John Wiley and Sons, Inc., 
1991), 521. 
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fashion and in a truly geometric spirit.”2  In retrospect, the work of Boylai and Lobachevsky was 

strikingly similar.  Although these were the three major players in bringing ideas about non-

Euclidean geometry to the forefront, Beltrami, Klein, Poincaré, and Riemann all helped to 

develop the subject.3  Even though it comes with a dramatic history, non-Euclidean geometry, 

particularly hyperbolic geometry, is an often abstract subject that requires accurate visual 

representations to gain a concrete understanding. 

 Before investigating different ways to represent the hyperbolic plane, it is important to 

gain a general understanding of what hyperbolic geometry is.  By definition, it is the geometry 

you get by assuming all the axioms for neutral geometry and replacing Hilbert’s parallel 

postulate by its negation, which we shall call the “hyperbolic axiom.”4 The hyperbolic axiom 

states, “There exists a line l and a point P not on l such that at least two distinct lines parallel to 

l pass through P.”5 This axiom is basically just negating Euclid’s fifth postulate and stating that 

there can be more than one parallel line to another drawn through a single point.  There are many 

important consequences that follow from this particular axiom.  The first of which is that all 

triangles have angle sum less than 180°.  Therefore, all convex quadrilaterals must have an angle 

sum less than 360°.  This easily follows as any convex quadrilateral can be divided into two 

triangles.  Additionally, there are no rectangles as there are no right angled triangles.  Using this, 

the universal hyperbolic theorem states: 

 

 

                                                 
      2 Marvin Jay Greenberg, Euclidean and Non-Euclidean Geometries (New York: W.H. Freeman and Comapany, 
1993), 184. 
      3 Ibid., 177-187.  
      4 Ibid., 187. 
      5 George E. Martin, The Foundations of Geometry and the Non-Euclidean Plane (New York: Intext Educational 
Publishers, 1975), 334. 
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Universal Hyperbolic Theorem:  “For every line l and every point P not on l there pass through 

P at least two distinct parallels to l. 

 Proof (reference Diagram 1):  Drop perpendicular PQ to l and erect line m through P 

 perpendicular to PQ.  Let R be another point on l, erect perpendicular t to l through R, 

 and drop perpendicular PS to t.  Now PS is parallel to l, since they are both perpendicular 

 to t.  We claim that m and PS are distinct lines.  Assume on the contrary that S lies on m.  

 Then PQRS is a rectangle.  This cannot be true as it contradicts the lemma denying the 

 existence of rectangles. ■6 

Another interesting result of this geometry is that it is not possible to have two similar, but non-

congruent triangles:  

 

 

 

 

 

 

 

                                                 
6 Greenberg, Euclidean and Non-Euclidean Geometries, 188.  
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Theorem: In hyperbolic geometry, if two triangles are similar, they are congruent.   

 Proof (reference Diagram 2): Assume on the contrary that there exist triangles ∆ABC 

 and ∆A�� B� C� which are similar but not  congruent.  Then no corresponding sides 

are  equal; otherwise the triangles would be congruent. Consider the triples (AB, AC,  BC) 

 and (A� B�, A� C�, B� C� ) of sides of these triangles.  One of these triples must 

contain at least  two segments that are larger than the two corresponding segments of the 

other triple,  e.g. AB > A� B� and AC > A� C�.  Then, there exists points B�� � on AB 

and C� � on AC such that  AB� � = A� B� and AC� � = A� C�.  By SAS, ∆A� B� 

C� ≅ ∆AB� � C� �.  Hence, corresponding angles  are congruent: ∠AB� � C� � = 

∠B�, ∠AC� � B� � = ∠C�.  By the hypothesis that ∆ABC and           ∆A� B� C� are 

similar, we also have ∠AB� � C� � = ∠B, ∠AC� � B� � = ∠C.  This implies that BC || 

 B� � C� �, so that quadrilateral BB� � C� � C is convex.  Also, ∠B + ∠BB� � C� 

� = 180° = ∠C +  ∠CC� � B� �.  It follows that quadrilateral BB� � C� � C has an 

angle sum of 360°.  This   contradicts the fact that the sum of the angles of a 

quadrilateral are less than 360°. ■7 

It is important to note that although this type of geometry refutes Euclid’s parallel line postulate, 

the term parallel is still used.  Here, parallel refers to non-intersecting lines.  What this means to 

hyperbolic geometry and how to visualize it will be discussed later in reference to specific 

models of the hyperbolic plane.  One final important concept to  

mention is the angle of parallelism.  Referencing Diagram 3, look at  

line l, a point P outside it and the rays coming out of P and not  

                                                 
7 Greenberg, Euclidean and Non-Euclidean Geometries, 190. 
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intersecting line l.  The least value of the angle that a ray parallel to 

 line l can make with PQ, the perpendicular to l, is called the angle of parallelism. The angle of 

parallelism decreases from 90° to 0° as the length of segment PQ increases. 8  With some of the 

basic tenets of hyperbolic geometry covered, the next step is to investigate how to create models 

of the hyperbolic space in order to better visualize the concepts.  

 Kant said that any geometry other than Euclidean is inconceivable.  It is true that 

hyperbolic geometry is an abstract concept.  This was a key issue mathematicians faced in 

making hyperbolic geometry accepted in the mathematical community.  As Lobachevsky said, 

"There is no branch of mathematics, however abstract, which may not some day be applied to the 

phenomena of the real world."9  It turns out that it is possible to find Euclidean objects that 

represent hyperbolic objects.  In fact, this discovery is what helped to make hyperbolic geometry 

a recognized form of geometry.   The Poincaré, Upper Half Plane, Beltrami-Klein, and 

Minkowski models all offer different representations of the hyperbolic space from a 

mathematical perspective.  Some of these models are finite, while the others are infinite.  The 

different forms affect how the definition of parallel can be applied.  These types of models are 

useful as they can be manipulated and used for calculations.  However, due to the abstract nature 

of hyperbolic geometry, physical constructions are often more effective in demonstrating key 

concepts related to hyperbolic geometry.  Both types of models are effective and useful in 

understanding geometry that abandons the familiar Euclidean perspective. 

  Henri Poincaré was one of the most prominent mathematicians of the twentieth century 

and he was able to develop a popular model of hyperbolic geometry.  In this model, the space 

consists of all the points in the interior of a circle, although the circle itself is not part of the 

                                                 
     8 Marta Sved, Journey into Geometries (Washington, DC: Mathematical Association of America, 1991), 72. 
     9 Boyer, A History of Mathematics, 533. 

Diagram 3 



Warner 6 
 

space.  There are different types of hyperbolic lines, which are represented by Euclidean arcs that 

intersect the boundary of the circle perpendicularly.  The first type consists of all line segments 

along the diameters of the circle with the endpoints of  

these segments excluded (for example, line l, in Diagram  

4). These may appear as straight lines, but can be  

thought of as the arc of a circle with infinite radius.  The  

second type consists of circular arcs, again ignoring the  

endpoints of these arcs (for example, lines m and n, in  

Diagram 4).   With an understanding of what a line is, it is  

important to re-visit the definition of parallel in hyperbolic geometry.  In this case, there are two 

different types of parallel lines, asymptotically and divergently parallel.  Two lines that have no 

common points within the model are said to be asymptotically parallel if they intersect on the 

boundary (e.g. l and m in Diagram 4).  Two lines in a model of hyperbolic geometry are 

divergently or ultra-parallel if they do not share any  

common points within the model or on the model's  

boundary (lines l and n).  Additionally, two lines  

intersect if they share a common point somewhere in  

the model (lines m and n).10  Now, looking at Diagram 5  

 and with this definition of parallel, one can easily see 

that Euclid’s fifth postulate fails, as both of the lines 

through point O would be considered parallel to C because they do not share a common point.  

However, the hyperbolic postulate (given any hyperbolic line and a point out of that line, there 

                                                 
      10 Colleen Robles, “The Hyperbolic Geometry Exhibit,” last modified July 15, 1996, http://www.geom.uiuc.edu/  
~crobles/hyperbolic/hypr/modl/. 
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are infinitely many hyperbolic lines passing through that point and parallel to the given point) 

holds.11   This model may not be Euclidean, but angles are still measured in a Euclidean fashion.  

Angles are measured by taking the Euclidean measurements of the angles of the tangents to the 

arcs. For example, to determine the angle of intersection between m and n (in Diagram 4) take 

the Euclidean tangents to the arcs at the point of intersection and measure the angle with a 

protractor.12  Similarly, Euclidean methods are used to determine distance.  If you take any two 

points, A and B, from within the model (see Diagram 5), then there is exactly one hyperbolic 

line, l, that passes through these points.  Now let P and Q be the two intersection points of l with 

the boundary circle.  The hyperbolic distance between A and B can now be defined as d(A, B)= 

 .13  Therefore, if you have two points that are visually a set distance apart from one 

another and close to the center of the Poincaré model, the hyperbolic distance between these two 

will increase exponentially as you move them closer to the edge of the model.  However, the 

distance that one can see and observe does not appear to have changed.   A final aspect of 

hyperbolic geometry that is interesting to observe in this model is  

triangle congruency.  Because hyperbolic length is  

different from Euclidean length, two triangles can actually  

be considered congruent without necessarily appearing to 

 be equal.14  To better understand this fact, it is important  

to recall that if any two triangles can be proven similar,  

they are also congruent.  Combined with the fact that the  

                                                 
     11 Sasho Kalajdzievski, Math and Art: An Introduction to Visual Mathematics (New York: CRC Press, 2008), 
156-157.  
     12 “The Hyperbolic Geometry Exhibit”  
     13 Kalajdzievski, Math and Art, 155. 
     14 Ibid.,158. 
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actual distance between two points is different from what is observable, it becomes easier to see 

that the two triangles in Diagram 6 are congruent.  Although this discussion of the Poincaré 

model has been brief, while covering a variety of topics, it is necessary to explore other models. 

 Henri Poincaré also created the upper half plane model.  Since the same mathematician 

developed both this model and the previous one, similarities exist between them.  In fact, he 

created this model first and used it in the development of the disk model.15  The upper half plane 

model, as the name suggests, consists of all the points in the upper half of the traditional xy-

plane, but excludes those lying on the x-axis.  The lines in this model are Euclidean half circles 

centered on the x-axis.  Vertical lines  

can be thought of as circles with an infinite  

radius.  The same definitions hold regarding  

how to determine whether or not lines are  

parallel.  This can best be seen in reference  

to Diagram 7.  Here, lines l and n intersect as they share a common point within the plane.  Lines 

k, m, and n are divergently parallel and lines k and l are asymptotically parallel.  As before, this 

model maintains angle measurements, although it distorts distances.  Thus, angles are measured 

using the Euclidean angles of the tangents.16  Due to the numerous similarities to the original 

Poincaré model, there is not much more to include regarding this model.  The majority of 

calculations remain the same.  The only difference between these two models is the change of 

perspective, as this maps the surface on the xy-plane, while the Poincaré model maps the surface 

on a circle. 

                                                 
     15 David C. Royster, “Neutral and Non-Euclidean Geometries”, last modified October 21, 1996, http://math. 
uncc.edu/~droyster/math3181/notes/hyprgeom/node58.html#SECTION002030000000000000000. 
     16 “The Hyperbolic Geometry Exhibit” 
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 The Beltrami-Klein model, commonly referred to as the Klein model, is another model 

used to represent hyperbolic geometry.  Eugenio Beltrami  

described this model in 1868, and Felix Klein fully developed  

it in 1871.17  Once again, all the points in the hyperbolic plane  

are represented in the interior of a circle where the circle itself  

is excluded.  Any point or line segment falling outside the  

circle is excluded as well.  Hyperbolic lines are represented as open  

chords, meaning the endpoints are excluded.  Two such lines are considered parallel if they have 

no points in common with asymptotically and divergently parallel lines maintaining the same 

definition as in the Poincaré model.  As a result, the hyperbolic postulate holds in this model.  

Referencing Diagram 8 and using the definition of parallel lines, it is obvious that both m and n 

are parallel to l.  Unlike the Poincaré model, it is difficult to measure angles in the Beltrami-

Klein model.  Angles can only be measured with a protractor at the origin.  Using this method 

with angles falling elsewhere results in incorrect measurements.  Consequently, proving triangle 

congruence is also an issue.  However, there exists an isomorphism between the Klein-Beltrami 

model and the Poincaré model that can be used to simplify this process.  To measure angles in 

the Klein-Beltrami model we can map the two intersecting lines to the Poincaré model using the 

isomorphism and measure the angles in the Poincaré model using the method previously 

described.18  To clarify, isomorphism means that a one-to-one correspondence can be set up 

between the points and lines in one model with the points and lines in another model.  Looking at 

the number of similarities between the models, it seems obvious that this action would be 

possible.  In fact, all possible models of hyperbolic geometry are isomorphic to one  

                                                 
17 Daina Taimina, Crocheting Adventures with Hyperbolic Planes (Natick, MA: A K Peters, Ltd., 2006), 76-77. 
18 “The Hyberbolic Geometry Exhibit” 
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another.  Diagram 9 depicts an isomorphism  

between the Klein and Poincaré model.  On  

the Klein model, consider a Euclidean sphere  

of the same radius sitting on the plane 

 tangent at the origin.  Now, project upward 

 and orthogonally, the entire Klein model onto the lower hemisphere of the sphere, making the 

chords arcs of circles orthogonal to the equator.  Then, project stereographically from the north 

pole of the sphere onto the original plane.  The equator of the sphere will project onto a circle 

larger than the one used in the Klein model, and the lower hemisphere will project 

stereographically onto the inside of this circle.  Under these successive transformations, the 

chords of the Klein model will be mapped one-to-one onto the diameters and orthogonal arcs of 

the Poincaré model.19  Once on the Poincaré model, calculations can be done as described above 

for that model.  It is important to note that the stereographic projection used in this process is 

essential as it preserves angles and has the ability to take spheres to planes and planes to 

spheres.20  While the Klein and Poincaré models both provide accurate representations of the 

hyperbolic space, there is yet another model to consider that is very different from both of these. 

 The Minkowski model is unique compared to the previous two and comes from the 

theory of special relativity.  Unlike the others, this model can be multi-dimensional.  It is not 

rooted in Euclidean concepts. As a result, it is more complex.  This model needs to be embedded 

in a space dimension one greater than its own.21  Distance is measured using the Minkowski 

metric, ds2 = dx2 + dy2 – dt2.  The surface is a sphere centered at the origin of imaginary radius i 

                                                 
19 Greenberg, Euclidean and Non-Euclidean Geometries, 237-8. 
20 James W. Cannon et al., “Hyperbolic Geometry”, Flavors of Geometry 31 (1997): 14. 
21 “The Hyperbolic Geometry Exhibit” 
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= √-1.  To visualize this surface in Euclidean terms, it is a two-sheeted hyperboloid (see Diagram 

10).  Points on this model correspond to points on a hyperboloid.  Lines  

are the intersection of the hyperboloid with planes passing through the  

origin.  Lengths and angles refer to the standard definition of lengths  

and angles in space time.  To find the angle between two curves, take  

the normal vectors to the planes they lie in and the angle is given by the 

formula:  .   Because this model is closely related to 

special relativity, many of the associated concepts fall beyond the scope of this paper.  However, 

the brief overview given thus far provides the basic foundations of this model.  One additional 

fact to note is that like the previous model, there is an isomorphism between the Minkowski 

model and the Beltrami-Klein model.  To do so, let the hyperboloid be denoted ∑ and the plane t 

= 1 is tangent to ∑ at point C = (0, 0, 1).  Let the Klein model be denoted ∆ and be the unit disk 

centered at C in this plane.  Projection from the origin (0, 0, 0) gives a one-to-one 

correspondence between the points of ∆ and the points of ∑.  Similarly, each chord m of ∆ lies 

on a unique plane through O and m corresponds to the section m� of ∑ cut out by the plane.22  

As before, using this isomorphism helps to simplify calculations.  Also, the fact that these 

isomorphisms exist between models demonstrates that although there are numerous analytic 

models, they each provide an accurate depiction of the hyperbolic space. 

 Models for the hyperbolic plane are useful for visualizing key concepts, verifying proofs, 

and accompanying theorems.  However, physical constructions of hyperbolic planes are tangible 

and more useful for coming to understand basic tenets of this geometry.  By definition, a 

hyperbolic plane is “a simply connected Riemannian manifold with negative Gaussian 

                                                 
      22 Greenberg, Euclidean and Non-Euclidean Geometries, 242. 
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curvature.”23  It is the geometric opposite of the sphere because it is open and infinite with space 

curving away from itself.  It may seem impossible to create a tangible, physical model to 

represent such a space.  However, examples exist, even in nature, from lettuce leaves to coral to 

cacti.  The key in creating a synthetic model is to create a surface that has a constant negative 

curvature.  As Riemann pointed out, “…hyperbolic geometry would be the intrinsic geometry of 

a surface with constant negative curvature that extended indefinitely in all directions.”24 Now, 

one must know how to calculate curvature of a surface.  Gauss discovered that the curvature of a 

shape could be found by making exact measurements along its surface.  This could mean starting 

at a point and measuring the circumference of circles centered on that point with various radii 

measured on that surface.  Positive curvature results when the circumference is less than 2πr, and 

negative curvature results when the circumference is greater than 2πr.  In a hyperbolic plane, the 

Gaussian curvature is -1/r2 where r denotes the radius of the plane. 25  Throughout the more 

recent years, there have been numerous attempts to create physical models with various degrees 

of success.   

 The first such model was made using paper annuli.  This model is known as the annular 

hyperbolic plane.  In the 1970s, William Thurston came up with this idea to avoid the use of 

equations in creating the hyperbolic space.26  For a time, this popular paper and tape model was 

the sole physical model available.  In this method, paper annular strips are attached together with 

tape to represent the space.  An annulus is the region between two concentric circles.   Thus, an 

annular strip is a portion of an annulus cut off by an angle from the center of the circles.27   

                                                 
     23 David Henderson, Marget Wertheim, and Daina Taimina, “Crocheting the Hyperbolic Plane: An Interview 
with David Henderson and Daina Taimina,” Cabinet Magazine 16 (2005).   
    24 Taimina, Crocheting Adventures with Hyperbolic Planes, 15. 
    25 David Henderson and Daina Taimina, “Crocheting the Hyperbolic Plane,” Mathematical Intelligencer 23 
(2001): 17-28. 
    26 Taimina, Crocheting Adventures with Hyperbolic Planes,19. 
27 Crocheting the Hyperbolic Plane pg. 133 
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To construct this model, one needs at least ten  

of these strips.  Attach these strips together  

with tape by matching the inner circle of one  

with the outer circle of the other or by  

placing them end-to-end.  The length of the  

strips does not necessarily matter, but they  

must have the same inner and outer radius.   

The model can be made as big or as small as  

necessary.  As the paper strips are continually  

added, the model will start to curve as the process  

involves attaching something with a smaller radius to  

something with a smaller radius.  The surface that  

this creates is only an approximation.  The actual hyperbolic plane comes from letting d → 0 and 

holding the radius fixed, where d = r2 – r1.  Here, r1 refers to the radius of the smaller circle and r2 

is the radius of the bigger circle.28  Basically, this means that the thickness of the strips 

themselves would have to become smaller and smaller until they were no thicker than a line. 29 

Because this surface is constructed the same everywhere, it is known as homogenous.  This 

means that intrinsically and geometrically every point in the model has a neighborhood that is 

isometric to a neighborhood of any other point.  One major drawback to these models is that they 

are not durable and not easily manipulated.   As a result, while this model accurately depicts 

hyperbolic geometry, the annular hyperbolic plane is not the preferred physical model. 

                                                 
     28 “Crocheting the Hyperbolic Plane” 
     29 Kristin Camenga, “Paper Hyperbolic Plane Models,” AMTNYS (2006). 
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 Another method to represent the hyperbolic space is the use of polyhedral constructions.  

These are made by putting seven equilateral triangles at every vertex.  As a result, it is also 

known as the {3,7} model to describe the three-gons placed seven at a vertex.  This model is 

easier to construct than the annular hyperbolic plane.  However, there are still some 

disadvantages.  First, at each vertex the angle is 420°, so it is not possible to achieve better 

approximations by decreasing the size of the triangles used.  The angles will always remain the 

same.  Also, it is difficult to describe coordinates on this model.   A modification to avoid some 

of these issues is to put seven triangles together only at every other vertex and only six triangles 

together at the remaining vertices.30  There are multiple ways to  

create this construction.  The first is to take polyhedral annuli and  

tape them together as in the previous model.  A polyhedral annulus 

is seen in Diagram 13.  Another method is to construct two annuli at  

once using a figure as seen in Diagram 14 and tape them together  

with side a → A, b → B, and c → C.  Finally, the preferred method,  

as it is the quickest, is to start with many strips with any particular 

length and then add four of the strips together using five additional  

triangles. The strip is seen in Diagram 15.  From here, add another  

strip at every place there is a vertex with five triangles and a gap.   

Looking at Diagram 16, this would be where there are bold black  

dots.  This ensures that at every vertex there are seven triangles.   

The center of each strip runs perpendicular to each annulus and  

                                                 
     30 “Crocheting the Hyperbolic Plane” 
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these are geodesics.31  To clarify, a geodesic refers to the shortest distance between two points on 

a mathematically defined surface.  On the more familiar Euclidean plane, this would be a straight 

line. 32 This is a good example of the usefulness of physical constructions aiding in concept 

comprehension, as geodesics are obvious on this model, while they would be more abstract on 

the analytic models.  Although this model is improved from the annular hyperbolic plane model, 

it still faces the difficulty of not being highly durable and easily  

manipulated.  However, there are possibly variations to this model.  

 Seven hexagons around a heptagon approximates a hyperbolic  

plane with a smooth tiling.  This model demonstrates negative  

curvature clearly and is quick to make.  It is often called a  

“hyperbolic soccer ball.”  Although, unlike a soccer ball, this  

model does not close in on a sphere.  The polyhedral construction  

actually curves away from itself because there is more than 360° at  

each vertex.33  It is important to note that this model is just an  

approximation as well because the polygons would need to get  

smaller and smaller progressively to create an actual hyperbolic  

plane.34  These types of constructions are useful, but calculations and visualizations still seem 

abstract.  The most original and preferred model is the final one to be discussed. 

 The final, and perhaps the most interesting method for constructing the hyperbolic plane, 

is the use of crochet.  The art of crochet has been around since the fourth century BC when used 

in ancient Egypt to make fabric.  Over the years, it has continued to evolve to become the 

                                                 
     31 Taimina, Crocheting Adventures with Hyperbolic Planes, 134-135. 
     32 “Geodesic” http://www.wolframalpha.com/input/?i=geodesic. 
     33 Taimina, Crocheting Adventures with Hyperbolic Planes, 14. 
     34 “Paper Hyperbolic Plane Models” 

Diagrams 17 and 18 
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popular craft that it is today.  Crochet has also been used to depict other mathematical surfaces, 

such as the Riemann surface.35  Not only are these models accurate, but they are also durable and 

ideal for classroom use.  There are a variety of different patterns available to create everything 

from a basic hyperbolic plane to a pseudosphere.  Daina Taimina was the first to crochet a model 

of the hyperbolic plane in 1997.  She actually uses these models in her upper level undergraduate 

geometry courses to help students understand the concepts of hyperbolic geometry.  To make a 

crocheted hyperbolic plane, all one needs to know is how to make a chain and how to single 

crochet.  The crochet must be tight and even with a constant ratio of increased stitches.  The 

radius of the hyperbolic plane is determined by the ratio of stitches from one row to the next 

(N/(N+1)).  The lower this ratio between stitches is, the smaller and  

more curved the plane will be, reference Diagram 19 for an example.   

An infinitely large radius would create a hyperbolic plane  

reminiscent of the Euclidean plane.  Because the larger the ratio, the  

more stitches are necessary, it is easy to see the concept of  

exponential growth in this type of model.  It can take quite a bit of  

time to construct a large crocheted hyperbolic plane, while only a  

matter of minutes to create a smaller version.36  Taimina spent time  

experimenting before she was able to develop a method to accurately depict the plane.  Because 

these types of hyperbolic planes are relatively easy to construct and can be various sizes, they are 

ideal models to explore this type of geometry.  

 Many different concepts in hyperbolic geometry can be studied on a crocheted hyperbolic 

plane.  Unlike the most popular analytic model, the Poincaré model, which distorts distances 

                                                 
35 Taimina, Crocheting Adventures with Hyperbolic Planes, 63-67. 
36 Ibid. 20-23. 
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while maintaining angles, three-dimensional crochet is able to give a more accurate picture. A 

model that represents hyperbolic lengths and angles  

correctly is known as isometric.  Asymptotically  

parallel lines can be seen in the lines that are  

perpendicular to the rows in the model.  These  

parallel lines diverge away from one another in  

one direction, but come very close together in the  

opposite direction.  Divergently parallel lines are  

also perpendicular to the crocheted rows, but these  

are close together in one place before diverging out  

in different directions.  Contrary to parallel lines,  

perpendicular lines can be found by first folding the  

model and then folding again so the first crease lies  

on itself.  This second line will be perpendicular to  

the first.  Another important concept of hyperbolic geometry to explore through crochet is 

triangle angle measurement.  To construct a triangle,  

pick three points on the model and connect them  

using straight lines.  Note that a straight line in this  

model is created by folding, without stretching the 

 figure.  This clearly demonstrates that the angle  

sum of the angles in a hyperbolic triangle is less than  

180°.37  In fact, the larger the triangle  

                                                 
37 Ibid., 26-31. 

Diagrams 20 and 21 
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one constructs, the closer the angle sum will be to 0°, as seen in Diagram 22.  A triangle with an 

angle sum of 0° is known as an ideal triangle.   For comparison, an ideal triangle on the upper 

half plane model is a triangle with all three vertices either on the x-axis or at infinity. 

Furthermore, all ideal triangles on the same plane are congruent.  This can be proven using the 

upper plane model (see Diagram 23) and visualized  

in the crochet model.  First, perform an inversion  

that takes one of the vertices on the x-axis to infinity  

and thus takes the two sides from that vertex to  

vertical lines. Then apply a similarity to the upper  

half plane taking this to the standard ideal triangle with vertices (−1,0), (0,1). It is difficult to see 

how the figure in Diagram 23 is a triangle, yet looking at the crocheted plane, the concept 

becomes more visible.  Another important fact to note is that the area of an ideal triangle is πr2.  

Here r represents the radius of the annuli. 38   Now, because certain constructions appear 

differently on planes of different radii and the radius is necessary to calculate triangle area, it is 

important to be able to measure radii on the crocheted plane.  To do so, place the crocheted plane 

on a flat surface and put a thread around the arc that forms to create a full circle.  Measure  

the diameter of this circle and cut that value in half;  

this is the radius of the hyperbolic plane.  This procedure  

is seen in Diagram 24.39  These are just a few examples of  

the concepts that a crocheted hyperbolic plane can depict  

as no other model can.  Exploration with this accurate  

physical model helps to concretize some of the abstract  

                                                 
     38 “Crocheting the Hyperbolic Plane” 
     39  Taimina, Crocheting Adventures with Hyperbolic Planes, 30-31. 

Diagram 23 

Diagram 24 
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concepts of hyperbolic geometry. 

 Although a crocheted hyperbolic plane is a useful learning tool, it is also important to 

consider whether the plane is symmetric and of constant negative curvature.  The following 

formula is integral to ensure those conditions are met: .  Here, the C 

represents the intrinsic circumference of a circle with an intrinsic radius r on a hyperbolic plane 

with a radius R.  Intrinsic means that the distance is measured along the surface of the hyperbolic 

plane.40  The intrinsic radius of the nth row is equal to , where h is the height of the 

crocheted stitch.  Now, the ratio C(n)/C(n-1) where n is the row number determines how to 

increase stitches.  When crocheting, one should mark where each new row starts in order to be 

able to maintain the proper ratio.  Once there are enough rows, the increase will stay the same as 

it reaches the limit of the previous formula.  These calculations may exist, but it is still critical to 

consider the type of yarn, desired radius, and the tightness of stitches that you are using when 

making the model.  Individual crochet style will affect calculations.  Another feature that can be 

seen here is that on a hyperbolic plane, the circumference of 

 a circle is larger than the circle with the same intrinsic 

radius on the plane.  To see this more clearly, look at  

Diagram 25, where there was one hundred meters of yarn  

for each shade of purple.  This one hundred meters was only  

enough to stitch two rows in the lightest shade at the edge  

of the hyperbolic plane.  If the radius of the intrinsic circle  

was five meters, the circumference on a hyperbolic plane  

                                                 
     40 Ibid., 83. 

Diagram 25 
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would be 49,000,000 kilometers, while on a Euclidean plane, the circumference would only be 

31.4 meters.41  These measurements alone clearly demonstrate the exponential growth seen in 

this geometry.  The ratio of stitches in one row is in direct proportion to the ratio of stitches in 

the next row.  Depending on the ratio used, the crocheted hyperbolic plane can grow extremely 

fast, just as the actual hyperbolic plane extends to infinity.  Although time consuming, creating 

an accurate hyperbolic plane through the use of crochet can be a worthwhile learning experience 

that continues to be useful even after its completion. 

 Hyperbolic geometry is an abstract concept.  It differs from the well known and widely 

accepted Euclidean geometry.  However, it has numerous real world applications.  In biology, 

hyperbolic geometry is used to study the brain.  In computer science, it can be used to solve NP 

problems.  In chemistry, it is used in research in the structure of molecules.  In medicine, it is 

used to find ways to perform reconstructive surgery and in analyzing brain images.  In physics, it 

is used in ergodic theory and in string theory.  In network security, it is used to construct graphs.  

In music, it is used to understand musical chords.  In art, it is used in modern paintings, 

sculpture, and CAD technology.42    In fact, scientists hypothesize that the shape our universe 

could be a three dimensional version of the hyperbolic plane.43  With so many people in so many 

different areas using hyperbolic geometry it is important to have models available to help with 

general understanding, performing calculations, and manipulating objects in the plane.  Whether 

using the Upper Half Plane model or a crocheted hyperbolic plane, the fact is that the person will 

benefit from the visual aid.  Hyperbolic geometry is a relatively new field, but as its popularity 

continues to grow, it becomes crucial to develop accurate and easy-to-use models that take the 

abstract concept and make it more familiar and concrete. 

                                                 
     41 Taimina, Crocheting Adventures with Hyperbolic Planes, 85. 
     42 Ibid., 119-131. 
     43 “Paper Hyperbolic Plane Models” 
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