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Hyperbolic Geometry and its Many Models

Unlike Euclid’'s geometry, non-Euclidean geomesrairelatively new idea that was not
discovered until the eighteenth century, and gsalery is not without controversy. Janos
Bolyai, who read the first six books of Eucli®ementdy age twelve, privately worked on the
topic inspired by his father’'s work in proving tfigh postulate. Originally, Farkas Bolyai tried
to convince his son to stop his research sayingt tnay take all your time, and deprive you of
your health, peace of mind, and happiness in fif@blyai’s father was great friends with the
most prominent mathematician of the time, Friedf&uss. Trusting his friend, Farkas sent his
son’s work to him. Unfortunately, Gauss wrote baok claimed that he had already discovered
all of Bolyai’s results, but was simply waiting pablish them. Crushed, Janos Bolyai fell into a
deep depression and never went any farther orghdaiany more of his work in non-Euclidean
geometry. There is some evidence that Gauss hadllgdeen working on similar results to
Bolyai’s, but he was too afraid to publish theme fdared the contempt of the metaphysicians
and, as a perfectionist, he did not want to publisbmplete results. The third player in the
discovery of this new kind of geometry was Nikdlanovich Lobachevsky. He was a Russian
who was the first to write a formal publication aeging non-Euclidean geometry in 1829. Just
as Gauss had feared, he received much criticisaweMer, he had the drive to continue

publishing. Eventually, Gauss conceded that “Lbleasky carried out the task in a masterly

! Carl B. BoyerA History of Mathematigsevised by Uta C. Merzbach (New York: John Witeyd Sons, Inc.,
1991), 521.
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fashion and in a truly geometric spirit.In retrospect, the work of Boylai and Lobachevslas
strikingly similar. Although these were the threajor players in bringing ideas about non-
Euclidean geometry to the forefront, Beltrami, KlePoincaré, and Riemann all helped to
develop the subjeét.Even though it comes with a dramatic history,-Eutlidean geometry,
particularly hyperbolic geometry, is an often aéstrsubject that requires accurate visual
representations to gain a concrete understanding.

Before investigating different ways to represéiet hyperbolic plane, it is important to
gain a general understanding of what hyperbolicrgeoy is. By definition, it is the geometry
you get by assuming all the axioms for neutral getoyrand replacing Hilbert’s parallel
postulate by its negation, which we shall call thgperbolic axiom.* The hyperbolic axiom
states, There exists a linéand a point P not ohAsuch that at least two distinct lines parallel to
¢ pass through P> This axiom is basically just negating Euclid’sHipostulate and stating that
there can be more than one parallel line to anatreawn through a single point. There are many
important consequences that follow from this patdcaxiom. The first of which is that all
triangles have angle sum less than 180°. Theredtireonvex quadrilaterals must have an angle
sum less than 360°. This easily follows as anywegrmuadrilateral can be divided into two
triangles. Additionally, there are no rectangleshere are no right angled triangles. Using this,

the universal hyperbolic theorem states:

2 Marvin Jay Greenbergtuclidean and Non-Euclidean Geometr{dew York: W.H. Freeman and Comapany,
1993), 184.

® Ibid., 177-187.

* Ibid., 187.

® George E. MartinThe Foundations of Geometry and the Non-Eucliddand{New York: Intext Educational
Publishers, 1975), 334.
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Universal Hyperbolic Theorem: “For every linel and every point P not drthere pass through
P at least two distinct parallels4o
Proof (reference Diagram 1): Drop perpendicular PQdnd erect linen through P
perpendicular to PQ. Let R be another point,@mect perpendicularto ¢ through R,
and drop perpendicular PSttoNow PS is parallel t§ since they are both perpendicular

tot. We claim thatnand PS are distinct lines. Assume on the contreatyS lies om.
Then PQRS is a rectangle. This cannot be tritecastradicts the lemma denying the

existence of rectangles®

Another interesting result of this geometry is tiha not possible to have two similar, but non-

congruent triangles:

Diagram : Al A

® GreenbergEuclidean and Non-Euclidean Geometri#88.
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Theorem: In hyperbolic geometry, if two triangles are sianjlthey are congruent.
Proof (reference Diagram 2): Assume on the contraryttiere exist triangleAABC
and AATI[] B[O CIJ which are similar but not congruent. Then naegponding sides
are equal; otherwise the triangles would be caosgruConsider the triples (AB, AC, BC)
and (A1 B, A1 Cl1, Bl C[J ) of sides of these triangles. One of thesedsiphust
contain at least two segments that are largertti@two corresponding segments of the
other triple, e.g. AB> A1 B[] and AC > A[1 C[1. Then, there exists points B[] [1 on AB
and C[] [J on AC suchthat B[ 1 =Al]Blland AC[] [1 =A[] C[]. By SAS, AA[] B[J
Cl = AABL! [1 ClJ 1. Hence, corresponding angles are congruéaB(] [1 CL1 [] =
OB, DACH [ BU [ =0C. By the hypothesis thatABC and AATI B CLJ are
similar, we also havelAB[] [ C[ [ =B, OACL [1 BlJ [0 =0C. This implies that BC ||
BUJ [J Cl1 [, so that quadrilateral BB[] [1 CLJ [1 C is convex. Alsol1B + BB [] CLI
1 =180°=0C + OCC [0 B [1. It follows that quadrilateral BB[] [1 C[1 (1 C has an
angle sum of 360°. This contradicts the fact tha sum of the angles of a
quadrilateral are less than 36@°.
It is important to note that although this typegebmetry refutes Euclid’s parallel line postulate,
the term parallel is still used. Here, paralléére to non-intersecting lines. What this means to
hyperbolic geometry and how to visualize it will tiecussed later in reference to specific
models of the hyperbolic plane. One final impotteoncept to .///(«P//
mention is the angle of parallelism. Referencinggbam 3, look at k

line ¢, a point P outside it and the rays coming out ah& not

" GreenbergEuclidean and Non-Euclidean Geometri&80.
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intersecting liné€. The least value of the angle that a ray partdlel

Diagram 3

line £ can make with PQ, the perpendiculat,ts called the angle of parall¢ gle of

parallelism decreases from 90° to 0° as the lenfjfegment PQ increas&sWith some of the
basic tenets of hyperbolic geometry covered, th step is to investigate how to create models
of the hyperbolic space in order to better viswattze concepts.

Kant said that any geometry other than Euclideandonceivable. It is true that
hyperbolic geometry is an abstract concept. Tlis arkey issue mathematicians faced in
making hyperbolic geometry accepted in the mathigadatommunity. As Lobachevsky said,
"There is no branch of mathematics, however alistndgch may not some day be applied to the
phenomena of the real world."t turns out that it is possible to find Euclideabjects that
represent hyperbolic objects. In fact, this diggus what helped to make hyperbolic geometry
a recognized form of geometry. The Poincaré, Upjadf Plane, Beltrami-Klein, and
Minkowski models all offer different representatsoof the hyperbolic space from a
mathematical perspective. Some of these modelngtes while the others are infinite. The
different forms affect how the definition of paedlcan be applied. These types of models are
useful as they can be manipulated and used fouledilens. However, due to the abstract nature
of hyperbolic geometry, physical constructions@ten more effective in demonstrating key
concepts related to hyperbolic geometry. Boths$ymianodels are effective and useful in
understanding geometry that abandons the familiatiean perspective.

Henri Poincaré was one of the most prominent ema#ticians of the twentieth century
and he was able to develop a popular model of lghergeometry. In this model, the space

consists of all the points in the interior of act@; although the circle itself is not part of the

8 Marta SvedJourney into Geometrig&Vashington, DC: Mathematical Association of Aneari1991), 72.
° Boyer, A History of Mathematics, 533.
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space. There are different types of hyperboliedjrwhich are represented by Euclidean arcs that
intersect the boundary of the circle perpendiculafhe first type consists of all line segments
along the diameters of the circle with the endooft

these segments excluded (for example,4inmeDiagram

4). These may appear as straight lines, but can be

/4
thought of as the arc of a circle with infinite ia&l The
second type consists of circular arcs, again iguptte "
endpoints of these arcs (for example, limeandn, in "

Diagram 4). With an understanding of what a Igjet is Diagram 4

important to re-visit the definition of parallel iyperbolic geometry. In this case, there are two
different types of parallel lines, asymptoticallydadivergently parallel. Two lines that have no
common points within the model are said to be asgtigally parallel if they intersect on the
boundary (e.¢f. andmin Diagram 4). Two lines in a model of hyperbagometry are
divergently or ultra-parallef they do not share any

common points within the model or on the model's

boundary (lineg andn). Additionally, two lines

intersect if they share a common point somewhere i

the model (linesn andn).*® Now, looking at Diagram , V .
and with this definition of parallel, one can éasee
that Euclid’s fifth postulate fails, as both of tiges =) Diagram 5

through point O would be considered parallel toe€Cause they do not share a common point.

However, the hyperbolic postulate (given any hypkedine and a point out of that line, there

9 Colleen Robles, “The Hyperbolic Geometry Exhibiast modified July 15, 1996, http://www.geom.uadu/
~crobles/hyperbolic/hypr/modl/.
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are infinitely many hyperbolic lines passing thrbubgat point and parallel to the given point)
holds™ This model may not be Euclidean, but anglestileneasured in a Euclidean fashion.
Angles are measured by taking the Euclidean meawunts of the angles of the tangents to the
arcs. For example, to determine the angle of iatéien betweem andn (in Diagram 4) take

the Euclidean tangents to the arcs at the poimttefsection and measure the angle with a
protractor:? Similarly, Euclidean methods are used to deteeristance. If you take any two
points, A and B, from within the model (see Diagramthen there is exactly one hyperbolic
line, |, that passes through these points. Now let Rabd the two intersection pointslofith

the boundary circle. The hyperbolic distance betw& and B can now be defined as d(A, B)=

d(AF)-d(B.2) 13
d{Ag)d(BP]

Therefore, if you have two points that are vigualset distance apart from one
another and close to the center of the Poincarémtite hyperbolic distance between these two
will increase exponentially as you move them cldasehe edge of the model. However, the
distance that one can see and observe does natrdpgeve changed. A final aspect of

hyperbolic geometry that is interesting to obsenvhnis model is

triangle congruency. Because hyperbolic length is

different from Euclidean length, two triangles @atually | ‘ A
be considered congruent without necessarily appg&oi : | ']l
be equal* To better understand this fact, it is important ‘

to recall that if any two triangles can be provenilsr,

they are also congruent. Combined with the faat tine

FIGURE 4.3.5 Two congruent equilateral hyperbolic triangles.

Diagram 6

11 sasho KalajdzievskMath and Art: An Introduction to Visual Mathematigéew York: CRC Press, 2008),
156-157.

12«The Hyperbolic Geometry Exhibit”

13 Kalajdzievski,Math and Art 155.

' Ibid.,158.
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actual distance between two points is differentnfrehat is observable, it becomes easier to see
that the two triangles in Diagram 6 are congrugxithough this discussion of the Poincaré
model has been brief, while covering a varietyopiids, it is necessary to explore other models.
Henri Poincaré also created the upper half plaodet Since the same mathematician
developed both this model and the previous ondlzsities exist between them. In fact, he
created this model first and used it in the develept of the disk modéf. The upper half plane
model, as the name suggests, consists of all timsgo the upper half of the traditional xy-

plane, but excludes those lying on the x-axis. [ifes in this model are Euclidean half circles

centered on the x-axis. Vertical lines N
Diagram 7

can be thought of as circles with an infinite

{
radius. The same definitions hold regardir k

m
how to determine whether or not lines are n /—\
parallel. This can best be seen in referencz h N

to Diagram 7. Here, lindsandn intersect as they share a common point withirpthee. Lines

k, m, andn are divergently parallel and lingsand| are asymptotically parallel. As before, this
model maintains angle measurements, althoughtartssdistances. Thus, angles are measured
using the Euclidean angles of the tangéhtBue to the numerous similarities to the original
Poincaré model, there is not much more to inclegarding this model. The majority of
calculations remain the same. The only differdmetgveen these two models is the change of
perspective, as this maps the surface on the xeplahile the Poincaré model maps the surface

on a circle.

> David C. Royster, “Neutral and Non-Euclidean Geties”, last modified October 21, 1996, http://math
uncc.edu/~droyster/math3181/notes/hyprgeom/nodeBB:BECTION002030000000000000000.
1% “The Hyperbolic Geometry Exhibit”
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The Beltrami-Klein model, commonly referred toths Klein model, is another model
used to represent hyperbolic geometry. Eugenitrdel
described this model in 1868, and Felix Klein fudigveloped
itin 18711 Once again, all the points in the hyperbolic plan

are represented in the interior of a circle whiaeedircle itself

is excluded. Any point or line segment falling ide the

circle is excluded as well. Hyperbolic lines agpresented as open Diagram 8

chords, meaning the endpoints are excluded. Twb koes are considered parallel if they have
no points in common with asymptotically and divertye parallel lines maintaining the same
definition as in the Poincaré model. As a reshk, hyperbolic postulate holds in this model.
Referencing Diagram 8 and using the definition axigfiel lines, it is obvious that bothandn

are parallel td. Unlike the Poincaré model, it is difficult to asre angles in the Beltrami-
Klein model. Angles can only be measured witha@rpctor at the origin. Using this method
with angles falling elsewhere results in incorneetasurements. Consequently, proving triangle
congruence is also an issue. However, there extsisomorphism between the Klein-Beltrami
model and the Poincaré model that can be usedndi this process. To measure angles in
the Klein-Beltrami model we can map the two intetsgy lines to the Poincaré model using the
isomorphism and measure the angles in the Poimcad&! using the method previously
described? To clarify, isomorphism means that a one-to-amreespondence can be set up
between the points and lines in one model withpibiats and lines in another model. Looking at
the number of similarities between the modelse@mss obvious that this action would be

possible. In fact, all possible models of hypeikbgkeometry are isomorphic to one

" Daina TaiminaCrocheting Adventures with Hyperbolic Plar(@gtick, MA: A K Peters, Ltd., 2006), 76-77.
18“The Hyberbolic Geometry Exhibit”
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another. Diagram 9 depicts an isomorphis

Diagram 9

between the Klein and Poincaré model. O
the Klein model, consider a Euclidean sph
of the same radius sitting on the plane

tangent at the origin. Now, project upwa

and orthogonally, the entire Klein model onto livger hemisphere of the sphere, making the
chords arcs of circles orthogonal to the equaldren, project stereographically from the north
pole of the sphere onto the original plane. Theasoy of the sphere will project onto a circle
larger than the one used in the Klein model, aeddiver hemisphere will project
stereographically onto the inside of this circlénder these successive transformations, the
chords of the Klein model will be mapped one-to-on# the diameters and orthogonal arcs of
the Poincaré modéf. Once on the Poincaré model, calculations carobe ds described above
for that model. It is important to note that tiersographic projection used in this process is
essential as it preserves angles and has theydbiliake spheres to planes and planes to
sphereg? While the Klein and Poincaré models both prowdeurate representations of the
hyperbolic space, there is yet another model tsiden that is very different from both of these.

The Minkowski model is unique compared to the mes two and comes from the
theory of special relativity. Unlike the othersistmodel can be multi-dimensional. It is not
rooted in Euclidean concepts. As a result, it isgr@mmplex. This model needs to be embedded
in a space dimension one greater than its Bwhistance is measured using the Minkowski

metric, d§ = dX¢ + dy? — df. The surface is a sphere centered at the orfgmamginary radius

19 GreenbergEuclidean and Non-Euclidean Geometri287-8.
20 James W. Cannon et al., “Hyperbolic GeometBjavors of Geometrgl (1997): 14.
2L «The Hyperbolic Geometry Exhibit”



Warner 11

=~-1. To visualize this surface in Euclidean terinis a two-sheeted hyperboloid (see Diagram
10). Points on this model correspond to pointa tiyperboloid. Lines
are the intersection of the hyperboloid with plapassing through the
origin. Lengths and angles refer to the standafohition of lengths
and angles in space time. To find the angle betwee curves, take

the normal vectors to the planes they lie in ardahgle is given by the

formula: cos(@) = % . Because this model is closely related to
wiw

Diagram 10

special relativity, many of the associated concégtdeyond the scope of this paper. However,
the brief overview given thus far provides the bdsundations of this model. One additional
fact to note is that like the previous model, thisren isomorphism between the Minkowski
model and the Beltrami-Klein model. To do sothet hyperboloid be denotédand the plane t
=1istangent td at point C = (0, O, 1). Let the Klein model bandedA and be the unit disk
centered at C in this plane. Projection from thgio (O, 0, 0) gives a one-to-one
correspondence between the pointd @ind the points gf. Similarly, each chorch of A lies
on a unique plane through O amdcorresponds to the sectian] of Y cut out by the plan&.
As before, using this isomorphism helps to simptif§culations. Also, the fact that these
isomorphisms exist between models demonstratesilihaiugh there are numerous analytic
models, they each provide an accurate depicticgheohyperbolic space.

Models for the hyperbolic plane are useful fouaiizing key concepts, verifying proofs,
and accompanying theorems. However, physical naetgins of hyperbolic planes are tangible
and more useful for coming to understand basict$enfethis geometry. By definition, a

hyperbolic plane is “a simply connected Riemanmmamifold with negative Gaussian

2 GreenbergEuclidean and Non-Euclidean Geometri242.
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curvature.® It is the geometric opposite of the sphere bezittis open and infinite with space
curving away from itself. It may seem impossildecteate a tangible, physical model to
represent such a space. However, examples exést,ie nature, from lettuce leaves to coral to
cacti. The key in creating a synthetic model isreate a surface that has a constant negative
curvature. As Riemann pointed out, “...hyperboliometry would be the intrinsic geometry of
a surface with constant negative curvature thatreled indefinitely in all direction$”Now,

one must know how to calculate curvature of a serfaGauss discovered that the curvature of a
shape could be found by making exact measuremkmtg #s surface. This could mean starting
at a point and measuring the circumference ofe&srckentered on that point with various radii
measured on that surface. Positive curvaturetseatdilen the circumference is less than 2nd
negative curvature results when the circumfereacgeaater than2. In a hyperbolic plane, the
Gaussian curvature is fivhere r denotes the radius of the pl&neThroughout the more

recent years, there have been numerous attemptsate physical models with various degrees
of success.

The first such model was made using paper aniilis model is known as the annular
hyperbolic plane. In the 1970s, William Thurst@me up with this idea to avoid the use of
equations in creating the hyperbolic spdtéor a time, this popular paper and tape model was
the sole physical model available. In this methgaher annular strips are attached together with
tape to represent the space. An annulus is therrégtween two concentric circles. Thus, an

annular strip is a portion of an annulus cut offamyangle from the center of the circfés.

% David Henderson, Marget Wertheim, and Daina Ta@mirocheting the Hyperbolic Plane: An Interview
with David Henderson and Daina Taimina,” Cabineigsteine 16 (2005)

24 Taimina,Crocheting Adventures with Hyperbolic Plan#s.

% David Henderson and Daina Taimina, “CrochetingHligperbolic Plane,Mathematical Intelligence?3
(2001): 17-28.

%6 Taimina,Crocheting Adventures with Hyperbolic Plaris
27 Crocheting the Hyperbolic Plane pg. 133
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To construct this model, one needs at least

of these strips. Attach these strips together

with tape by matching the inner circle of one his e
strip iz kept flat
. . on the plane, then
with the outer circle of the other or by A s edge will raffle.

atd this edge will bend
up likke the start of a cone.

placing them end-to-end. The length of the

strips does not necessarily matter, but they

must have the same inner and outer radius.

The model can be made as big or as small as
necessary. As the paper strips are continually
added, the model will start to curve as the process

involves attaching something with a smaller radus

something with a smaller radius. The surface that Diagrams 11 and 12

this creates is only an approximation. The adtypkrbolic plane comes from letting— 0 and
holding the radius fixed, whete=r, —r; Here,r; refers to the radius of the smaller circle and

is the radius of the bigger circle.Basically, this means that the thickness of thips

themselves would have to become smaller and smaitérthey were no thicker than a lirfé.
Because this surface is constructed the same ekergwit is known as homogenous. This
means that intrinsically and geometrically everinpm the model has a neighborhood that is
isometric to a neighborhood of any other point.e@major drawback to these models is that they
are not durable and not easily manipulated. Aesalt, while this model accurately depicts

hyperbolic geometry, the annular hyperbolic plaeat the preferred physical model.

28 «Crocheting the Hyperbolic Plane”
29 Kristin Camenga, “Paper Hyperbolic Plane ModefsVITNYS (2006).
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Another method to represent the hyperbolic spatiea use of polyhedral constructions.
These are made by putting seven equilateral tréngfl every vertex. As a result, it is also
known as the {3,7} model to describe the three-gaased seven at a vertex. This model is
easier to construct than the annular hyperbolingalaHowever, there are still some
disadvantages. First, at each vertex the andl2Q$, so it is not possible to achieve better
approximations by decreasing the size of the tfesgsed. The angles will always remain the
same. Also, it is difficult to describe coordiraten this model. A modification to avoid some

of these issues is to put seven triangles togethigrat every other vertex and only six triangles

together at the remaining vertic8sThere are multiple ways to Diagrams 1-16

create this construction. The first is to takeypedral annuli and

tape them together as in the previous model. Ahmalral annulus \/
is seen in Diagram 13. Another method is to costwo annuli at \/
once using a figure as seen in Diagram 14 andttee together ¢ G
with side a— A, b— B, and c— C. Finally, the preferred method, b

as it is the quickest, is to start with many stipth any particular a

length and then add four of the strips togethemgifive additional

triangles. The strip is seen in Diagram 15. Frarehadd another

strip at every place there is a vertex with fivarigles and a gap.

Looking at Diagram 16, this would be where theeelaold black @

dots. This ensures that at every vertex thersearen triangles.

The center of each strip runs perpendicular to eaclulus and

30 «Crocheting the Hyperbolic Plane”
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these are geodesits.To clarify, a geodesic refers to the shortesiadise between two points on
a mathematically defined surface. On the morelfanttuclidean plane, this would be a straight
line. ®? This is a good example of the usefulness of paysienstructions aiding in concept
comprehension, as geodesics are obvious on thiglmaldile they would be more abstract on
the analytic models. Although this model is imprd\¥rom the annular hyperbolic plane model,
it still faces the difficulty of not being highlyudable and easily
manipulated. However, there are possibly variatinthis model.
Seven hexagons around a heptagon approximatgsesiojic
plane with a smooth tiling. This model demonssategative
curvature clearly and is quick to make. It is oftalled a
“hyperbolic soccer ball.” Although, unlike a soctall, this
model does not close in on a sphere. The polyhedrstruction
actually curves away from itself because thereasenthan 360° at

each verteX® It is important to note that this model is just a

approximation as well because the polygons wouédirie get

smaller and smaller progressively to create anahbityperbolic Diagrams 17 and 18

plane* These types of constructions are useful, buutations and visualizations still seem
abstract. The most original and preferred mod#iedinal one to be discussed.

The final, and perhaps the most interesting mefbodonstructing the hyperbolic plane,
is the use of crochet. The art of crochet has beennd since the fourth century BC when used

in ancient Egypt to make fabric. Over the yedreas continued to evolve to become the

31 Taimina,Crocheting Adventures with Hyperbolic Plan&84-135.
$2«Geodesic” http://www.wolframalpha.com/input/?i-gesic.

% Taimina,Crocheting Adventures with Hyperbolic Plan&4.

34 «“paper Hyperbolic Plane Models”
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popular craft that it is today. Crochet has alserbused to depict other mathematical surfaces,
such as the Riemann surfaceNot only are these models accurate, but theplaedurable and
ideal for classroom use. There are a variety i dint patterns available to create everything
from a basic hyperbolic plane to a pseudosphemanaDTaimina was the first to crochet a model
of the hyperbolic plane in 1997. She actually ubese models in her upper level undergraduate
geometry courses to help students understand tieepts of hyperbolic geometry. To make a
crocheted hyperbolic plane, all one needs to kreomoiv to make a chain and how to single
crochet. The crochet must be tight and even witbresstant ratio of increased stitches. The
radius of the hyperbolic plane is determined byr#im of stitches from one row to the next
(N/(N+1)). The lower this ratio between stitchesthe smaller and
more curved the plane will be, reference Diagranfot @n example.

An infinitely large radius would create a hyperbgliane

reminiscent of the Euclidean plane. Because ttyetdahe ratio, the — croeted myperbolic plane vith ratio 56
more stitches are necessary, it is easy to semtieept of

exponential growth in this type of model. It cake quite a bit of

time to construct a large crocheted hyperbolic @lavhile only a

tocheted hyperbolic plane with ratio 3:4.

matter of minutes to create a smaller versfofaimina spent time Diagram 19

experimenting before she was able to develop agddthaccurately depict the plane. Because
these types of hyperbolic planes are relatively éagonstruct and can be various sizes, they are
ideal models to explore this type of geometry.

Many different concepts in hyperbolic geometry barstudied on a crocheted hyperbolic

plane. Unlike the most popular analytic model, Boéncaré model, which distorts distances

% Taimina,Crocheting Adventures with Hyperbolic Plan68-67.
% |bid. 20-23.
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while maintaining angles, three-dimensional crodcbeaible to give a more accurate picture. A

model that represents hyperbolic lengths and angles Diagrams 20 and 21

correctly is known as isometric. Asymptotically
parallel lines can be seen in the lines that are
perpendicular to the rows in the model. These

parallel lines diverge away from one another in

one direction, but come very close together in the . _
Asymptotic straight lines in the hyperbolic plane:
they become closer and closer but never intersect.

opposite direction. Divergently parallel lines are
also perpendicular to the crocheted rows, but thes:
are close together in one place before divergirig ot
in different directions. Contrary to parallel I&)e

perpendicular lines can be found by first foldihg t

model and then folding again so the first crease li

I wo nonintersecting lines in the hyperbolic plane

i i i i ; that di in two directions.
on itself. This second line will be perpendicuiiar 75 GREEgR I P

the first. Another important concept of hyperba@eometry to explore through crochet is
triangle angle measurement. To construct a treggngl
pick three points on the model and connect them
using straight lines. Note that a straight lin¢his
model is created by folding, without stretching the

figure. This clearly demonstrates that the angle

sum of the angles in a hyperbolic triangle is khss

Diagram 22

180°3’ In fact, the larger the triangle

37 \bid., 26-31.
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one constructs, the closer the angle sum will ¥ t@s seen in Diagram 22. A triangle with an
angle sum of 0° is known as an ideal triangle.r déaparison, an ideal triangle on the upper
half plane model is a triangle with all three vegs either on the x-axis or at infinity.

Furthermore, all ideal triangles on the same plmeecongruent. This can be proven using the

upper plane model (see Diagram 23) and visualized Diagram 23 N N

in the crochet model. First, perform an inversion

that takes one of the vertices on xaaxis to infinity
and thus takes the two sides from that vertex to / \

H H . . . = I,D
vertical lines. Then apply a similarity to the uppe LD .0

half plane taking this to the standard ideal trlangith vertices £1,0), (0,1). It is difficult to see
how the figure in Diagram 23 is a triangle, yetkimg at the crocheted plane, the concept
becomes more visible. Another important fact teeris that the area of an ideal triangleri$

Herer represents the radius of the anrtili.Now, because certain constructions appear
differently on planes of different radii and thelitgs is necessary to calculate triangle area, it is
important to be able to measure radii on the crgchplane. To do so, place the crocheted plane
on a flat surface and put a thread around thehatdorms to create a full circle. Measure

the diameter of this circle and cut that valueaif;h

this is the radius of the hyperbolic plane. Thisgedure

is seen in Diagram 2#. These are just a few examples of

the concepts that a crocheted hyperbolic planalearct

as no other model can. Exploration with this aatir

physical model helps to concretize some of therabist

Diagram 24

38 «Crocheting the Hyperbolic Plane”
39 Taimina,Crocheting Adventures with Hyperbolic Plan8g-31.
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concepts of hyperbolic geometry.
Although a crocheted hyperbolic plane is a usiefaining tool, it is also important to

consider whether the plane is symmetric and oftemisiegative curvature. The following

formula is integral to ensure those conditionsraet: C = 7R - (ei"% - e'i"%j. Here, the C

represents the intrinsic circumference of a civald an intrinsic radius on a hyperbolic plane
with a radiusR. Intrinsic means that the distance is measumibathe surface of the hyperbolic

plane?® The intrinsic radius of theth row is equal tet - h, whereh is the height of the

crocheted stitch. Now, the ratiorf{C(n-1) wheren is the row number determines how to
increase stitches. When crocheting, one should mbhere each new row starts in order to be
able to maintain the proper ratio. Once theresamigh rows, the increase will stay the same as
it reaches the limit of the previous formula. Téealculations may exist, but it is still critidal
consider the type of yarn, desired radius, andigfeness of stitches that you are using when
making the model. Individual crochet style wilfedt calculations. Another feature that can be
seen here is that on a hyperbolic plane, the cifetence of
a circle is larger than the circle with the samtemsic

radius on the plane. To see this more clearlyk bto

Diagram 25, where there was one hundred meterarafy ¢
for each shade of purple. This one hundred metassonly N 3
enough to stitch two rows in the lightest shadiatedge

of the hyperbolic plane. If the radius of theimsic circle

was five meters, the circumference on a hyperhaséioe

Diagram 25

49 bid., 83.
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would be 49,000,000 kilometers, while on a Euclidpkane, the circumference would only be
31.4 meter§! These measurements alone clearly demonstragxgumential growth seen in
this geometry. The ratio of stitches in one rowidirect proportion to the ratio of stitches in
the next row. Depending on the ratio used, theleted hyperbolic plane can grow extremely
fast, just as the actual hyperbolic plane exteadsfinity. Although time consuming, creating
an accurate hyperbolic plane through the use ahe&tocan be a worthwhile learning experience
that continues to be useful even after its compteti

Hyperbolic geometry is an abstract concept. ffeds from the well known and widely
accepted Euclidean geometry. However, it has nonsereal world applications. In biology,
hyperbolic geometry is used to study the braincdmputer science, it can be used to solve NP
problems. In chemistry, it is used in researcthnenstructure of molecules. In medicine, it is
used to find ways to perform reconstructive surgerg in analyzing brain images. In physics, it
is used in ergodic theory and in string theorynétwork security, it is used to construct graphs.
In music, it is used to understand musical chotdsart, it is used in modern paintings,
sculpture, and CAD technolod$. In fact, scientists hypothesize that the sfmpauniverse
could be a three dimensional version of the hypariptane®® With so many people in so many
different areas using hyperbolic geometry it is amant to have models available to help with
general understanding, performing calculations,madipulating objects in the plane. Whether
using the Upper Half Plane model or a crochetectthglic plane, the fact is that the person will
benefit from the visual aid. Hyperbolic geomesyairelatively new field, but as its popularity
continues to grow, it becomes crucial to develapueste and easy-to-use models that take the

abstract concept and make it more familiar and iac

4! Taimina,Crocheting Adventures with Hyperbolic Plangs.
*2|bid., 119-131.
43«paper Hyperbolic Plane Models”
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